|
|
|
|
|
import torch |
|
|
|
from ultralytics.engine.results import Results |
|
from ultralytics.models.yolo.detect.predict import DetectionPredictor |
|
from ultralytics.utils import DEFAULT_CFG, ops |
|
|
|
|
|
class OBBPredictor(DetectionPredictor): |
|
""" |
|
A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils import ASSETS |
|
from ultralytics.models.yolo.obb import OBBPredictor |
|
|
|
args = dict(model='yolov8n-obb.pt', source=ASSETS) |
|
predictor = OBBPredictor(overrides=args) |
|
predictor.predict_cli() |
|
``` |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
"""Initializes OBBPredictor with optional model and data configuration overrides.""" |
|
super().__init__(cfg, overrides, _callbacks) |
|
self.args.task = "obb" |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
"""Post-processes predictions and returns a list of Results objects.""" |
|
preds = ops.non_max_suppression( |
|
preds, |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
nc=len(self.model.names), |
|
classes=self.args.classes, |
|
rotated=True, |
|
) |
|
|
|
if not isinstance(orig_imgs, list): |
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) |
|
|
|
results = [] |
|
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]): |
|
rboxes = ops.regularize_rboxes(torch.cat([pred[:, :4], pred[:, -1:]], dim=-1)) |
|
rboxes[:, :4] = ops.scale_boxes(img.shape[2:], rboxes[:, :4], orig_img.shape, xywh=True) |
|
|
|
obb = torch.cat([rboxes, pred[:, 4:6]], dim=-1) |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, obb=obb)) |
|
return results |
|
|