|
|
|
|
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
from ultralytics.utils import LOGGER, ops |
|
from ultralytics.utils.checks import check_requirements |
|
from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou |
|
from ultralytics.utils.plotting import output_to_target, plot_images |
|
|
|
|
|
class PoseValidator(DetectionValidator): |
|
""" |
|
A class extending the DetectionValidator class for validation based on a pose model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.pose import PoseValidator |
|
|
|
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml') |
|
validator = PoseValidator(args=args) |
|
validator() |
|
``` |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
"""Initialize a 'PoseValidator' object with custom parameters and assigned attributes.""" |
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks) |
|
self.sigma = None |
|
self.kpt_shape = None |
|
self.args.task = "pose" |
|
self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot) |
|
if isinstance(self.args.device, str) and self.args.device.lower() == "mps": |
|
LOGGER.warning( |
|
"WARNING โ ๏ธ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " |
|
"See https://github.com/ultralytics/ultralytics/issues/4031." |
|
) |
|
|
|
def preprocess(self, batch): |
|
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device.""" |
|
batch = super().preprocess(batch) |
|
batch["keypoints"] = batch["keypoints"].to(self.device).float() |
|
return batch |
|
|
|
def get_desc(self): |
|
"""Returns description of evaluation metrics in string format.""" |
|
return ("%22s" + "%11s" * 10) % ( |
|
"Class", |
|
"Images", |
|
"Instances", |
|
"Box(P", |
|
"R", |
|
"mAP50", |
|
"mAP50-95)", |
|
"Pose(P", |
|
"R", |
|
"mAP50", |
|
"mAP50-95)", |
|
) |
|
|
|
def postprocess(self, preds): |
|
"""Apply non-maximum suppression and return detections with high confidence scores.""" |
|
return ops.non_max_suppression( |
|
preds, |
|
self.args.conf, |
|
self.args.iou, |
|
labels=self.lb, |
|
multi_label=True, |
|
agnostic=self.args.single_cls, |
|
max_det=self.args.max_det, |
|
nc=self.nc, |
|
) |
|
|
|
def init_metrics(self, model): |
|
"""Initiate pose estimation metrics for YOLO model.""" |
|
super().init_metrics(model) |
|
self.kpt_shape = self.data["kpt_shape"] |
|
is_pose = self.kpt_shape == [17, 3] |
|
nkpt = self.kpt_shape[0] |
|
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt |
|
self.stats = dict(tp_p=[], tp=[], conf=[], pred_cls=[], target_cls=[]) |
|
|
|
def _prepare_batch(self, si, batch): |
|
"""Prepares a batch for processing by converting keypoints to float and moving to device.""" |
|
pbatch = super()._prepare_batch(si, batch) |
|
kpts = batch["keypoints"][batch["batch_idx"] == si] |
|
h, w = pbatch["imgsz"] |
|
kpts = kpts.clone() |
|
kpts[..., 0] *= w |
|
kpts[..., 1] *= h |
|
kpts = ops.scale_coords(pbatch["imgsz"], kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"]) |
|
pbatch["kpts"] = kpts |
|
return pbatch |
|
|
|
def _prepare_pred(self, pred, pbatch): |
|
"""Prepares and scales keypoints in a batch for pose processing.""" |
|
predn = super()._prepare_pred(pred, pbatch) |
|
nk = pbatch["kpts"].shape[1] |
|
pred_kpts = predn[:, 6:].view(len(predn), nk, -1) |
|
ops.scale_coords(pbatch["imgsz"], pred_kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"]) |
|
return predn, pred_kpts |
|
|
|
def update_metrics(self, preds, batch): |
|
"""Metrics.""" |
|
for si, pred in enumerate(preds): |
|
self.seen += 1 |
|
npr = len(pred) |
|
stat = dict( |
|
conf=torch.zeros(0, device=self.device), |
|
pred_cls=torch.zeros(0, device=self.device), |
|
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), |
|
tp_p=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), |
|
) |
|
pbatch = self._prepare_batch(si, batch) |
|
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") |
|
nl = len(cls) |
|
stat["target_cls"] = cls |
|
if npr == 0: |
|
if nl: |
|
for k in self.stats.keys(): |
|
self.stats[k].append(stat[k]) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls) |
|
continue |
|
|
|
|
|
if self.args.single_cls: |
|
pred[:, 5] = 0 |
|
predn, pred_kpts = self._prepare_pred(pred, pbatch) |
|
stat["conf"] = predn[:, 4] |
|
stat["pred_cls"] = predn[:, 5] |
|
|
|
|
|
if nl: |
|
stat["tp"] = self._process_batch(predn, bbox, cls) |
|
stat["tp_p"] = self._process_batch(predn, bbox, cls, pred_kpts, pbatch["kpts"]) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(predn, bbox, cls) |
|
|
|
for k in self.stats.keys(): |
|
self.stats[k].append(stat[k]) |
|
|
|
|
|
if self.args.save_json: |
|
self.pred_to_json(predn, batch["im_file"][si]) |
|
|
|
|
|
|
|
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_kpts=None, gt_kpts=None): |
|
""" |
|
Return correct prediction matrix. |
|
|
|
Args: |
|
detections (torch.Tensor): Tensor of shape [N, 6] representing detections. |
|
Each detection is of the format: x1, y1, x2, y2, conf, class. |
|
labels (torch.Tensor): Tensor of shape [M, 5] representing labels. |
|
Each label is of the format: class, x1, y1, x2, y2. |
|
pred_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing predicted keypoints. |
|
51 corresponds to 17 keypoints each with 3 values. |
|
gt_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing ground truth keypoints. |
|
|
|
Returns: |
|
torch.Tensor: Correct prediction matrix of shape [N, 10] for 10 IoU levels. |
|
""" |
|
if pred_kpts is not None and gt_kpts is not None: |
|
|
|
area = ops.xyxy2xywh(gt_bboxes)[:, 2:].prod(1) * 0.53 |
|
iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area) |
|
else: |
|
iou = box_iou(gt_bboxes, detections[:, :4]) |
|
|
|
return self.match_predictions(detections[:, 5], gt_cls, iou) |
|
|
|
def plot_val_samples(self, batch, ni): |
|
"""Plots and saves validation set samples with predicted bounding boxes and keypoints.""" |
|
plot_images( |
|
batch["img"], |
|
batch["batch_idx"], |
|
batch["cls"].squeeze(-1), |
|
batch["bboxes"], |
|
kpts=batch["keypoints"], |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg", |
|
names=self.names, |
|
on_plot=self.on_plot, |
|
) |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots predictions for YOLO model.""" |
|
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0) |
|
plot_images( |
|
batch["img"], |
|
*output_to_target(preds, max_det=self.args.max_det), |
|
kpts=pred_kpts, |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg", |
|
names=self.names, |
|
on_plot=self.on_plot, |
|
) |
|
|
|
def pred_to_json(self, predn, filename): |
|
"""Converts YOLO predictions to COCO JSON format.""" |
|
stem = Path(filename).stem |
|
image_id = int(stem) if stem.isnumeric() else stem |
|
box = ops.xyxy2xywh(predn[:, :4]) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
for p, b in zip(predn.tolist(), box.tolist()): |
|
self.jdict.append( |
|
{ |
|
"image_id": image_id, |
|
"category_id": self.class_map[int(p[5])], |
|
"bbox": [round(x, 3) for x in b], |
|
"keypoints": p[6:], |
|
"score": round(p[4], 5), |
|
} |
|
) |
|
|
|
def eval_json(self, stats): |
|
"""Evaluates object detection model using COCO JSON format.""" |
|
if self.args.save_json and self.is_coco and len(self.jdict): |
|
anno_json = self.data["path"] / "annotations/person_keypoints_val2017.json" |
|
pred_json = self.save_dir / "predictions.json" |
|
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...") |
|
try: |
|
check_requirements("pycocotools>=2.0.6") |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
for x in anno_json, pred_json: |
|
assert x.is_file(), f"{x} file not found" |
|
anno = COCO(str(anno_json)) |
|
pred = anno.loadRes(str(pred_json)) |
|
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "keypoints")]): |
|
if self.is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
idx = i * 4 + 2 |
|
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[ |
|
:2 |
|
] |
|
except Exception as e: |
|
LOGGER.warning(f"pycocotools unable to run: {e}") |
|
return stats |
|
|