|
|
|
|
|
from ultralytics.engine.results import Results |
|
from ultralytics.models.yolo.detect.predict import DetectionPredictor |
|
from ultralytics.utils import DEFAULT_CFG, ops |
|
|
|
|
|
class SegmentationPredictor(DetectionPredictor): |
|
""" |
|
A class extending the DetectionPredictor class for prediction based on a segmentation model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils import ASSETS |
|
from ultralytics.models.yolo.segment import SegmentationPredictor |
|
|
|
args = dict(model='yolov8n-seg.pt', source=ASSETS) |
|
predictor = SegmentationPredictor(overrides=args) |
|
predictor.predict_cli() |
|
``` |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
"""Initializes the SegmentationPredictor with the provided configuration, overrides, and callbacks.""" |
|
super().__init__(cfg, overrides, _callbacks) |
|
self.args.task = "segment" |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
"""Applies non-max suppression and processes detections for each image in an input batch.""" |
|
p = ops.non_max_suppression( |
|
preds[0], |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
nc=len(self.model.names), |
|
classes=self.args.classes, |
|
) |
|
|
|
if not isinstance(orig_imgs, list): |
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) |
|
|
|
results = [] |
|
proto = preds[1][-1] if isinstance(preds[1], tuple) else preds[1] |
|
for i, pred in enumerate(p): |
|
orig_img = orig_imgs[i] |
|
img_path = self.batch[0][i] |
|
if not len(pred): |
|
masks = None |
|
elif self.args.retina_masks: |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) |
|
else: |
|
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) |
|
return results |
|
|