|
|
|
|
|
from multiprocessing.pool import ThreadPool |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator |
|
from ultralytics.utils import LOGGER, NUM_THREADS, ops |
|
from ultralytics.utils.checks import check_requirements |
|
from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou |
|
from ultralytics.utils.plotting import output_to_target, plot_images |
|
|
|
|
|
class SegmentationValidator(DetectionValidator): |
|
""" |
|
A class extending the DetectionValidator class for validation based on a segmentation model. |
|
|
|
Example: |
|
```python |
|
from ultralytics.models.yolo.segment import SegmentationValidator |
|
|
|
args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml') |
|
validator = SegmentationValidator(args=args) |
|
validator() |
|
``` |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" |
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks) |
|
self.plot_masks = None |
|
self.process = None |
|
self.args.task = "segment" |
|
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) |
|
|
|
def preprocess(self, batch): |
|
"""Preprocesses batch by converting masks to float and sending to device.""" |
|
batch = super().preprocess(batch) |
|
batch["masks"] = batch["masks"].to(self.device).float() |
|
return batch |
|
|
|
def init_metrics(self, model): |
|
"""Initialize metrics and select mask processing function based on save_json flag.""" |
|
super().init_metrics(model) |
|
self.plot_masks = [] |
|
if self.args.save_json: |
|
check_requirements("pycocotools>=2.0.6") |
|
self.process = ops.process_mask_upsample |
|
else: |
|
self.process = ops.process_mask |
|
self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[]) |
|
|
|
def get_desc(self): |
|
"""Return a formatted description of evaluation metrics.""" |
|
return ("%22s" + "%11s" * 10) % ( |
|
"Class", |
|
"Images", |
|
"Instances", |
|
"Box(P", |
|
"R", |
|
"mAP50", |
|
"mAP50-95)", |
|
"Mask(P", |
|
"R", |
|
"mAP50", |
|
"mAP50-95)", |
|
) |
|
|
|
def postprocess(self, preds): |
|
"""Post-processes YOLO predictions and returns output detections with proto.""" |
|
p = ops.non_max_suppression( |
|
preds[0], |
|
self.args.conf, |
|
self.args.iou, |
|
labels=self.lb, |
|
multi_label=True, |
|
agnostic=self.args.single_cls, |
|
max_det=self.args.max_det, |
|
nc=self.nc, |
|
) |
|
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] |
|
return p, proto |
|
|
|
def _prepare_batch(self, si, batch): |
|
"""Prepares a batch for training or inference by processing images and targets.""" |
|
prepared_batch = super()._prepare_batch(si, batch) |
|
midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si |
|
prepared_batch["masks"] = batch["masks"][midx] |
|
return prepared_batch |
|
|
|
def _prepare_pred(self, pred, pbatch, proto): |
|
"""Prepares a batch for training or inference by processing images and targets.""" |
|
predn = super()._prepare_pred(pred, pbatch) |
|
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"]) |
|
return predn, pred_masks |
|
|
|
def update_metrics(self, preds, batch): |
|
"""Metrics.""" |
|
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): |
|
self.seen += 1 |
|
npr = len(pred) |
|
stat = dict( |
|
conf=torch.zeros(0, device=self.device), |
|
pred_cls=torch.zeros(0, device=self.device), |
|
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), |
|
tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), |
|
) |
|
pbatch = self._prepare_batch(si, batch) |
|
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") |
|
nl = len(cls) |
|
stat["target_cls"] = cls |
|
if npr == 0: |
|
if nl: |
|
for k in self.stats.keys(): |
|
self.stats[k].append(stat[k]) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls) |
|
continue |
|
|
|
|
|
gt_masks = pbatch.pop("masks") |
|
|
|
if self.args.single_cls: |
|
pred[:, 5] = 0 |
|
predn, pred_masks = self._prepare_pred(pred, pbatch, proto) |
|
stat["conf"] = predn[:, 4] |
|
stat["pred_cls"] = predn[:, 5] |
|
|
|
|
|
if nl: |
|
stat["tp"] = self._process_batch(predn, bbox, cls) |
|
stat["tp_m"] = self._process_batch( |
|
predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True |
|
) |
|
if self.args.plots: |
|
self.confusion_matrix.process_batch(predn, bbox, cls) |
|
|
|
for k in self.stats.keys(): |
|
self.stats[k].append(stat[k]) |
|
|
|
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) |
|
if self.args.plots and self.batch_i < 3: |
|
self.plot_masks.append(pred_masks[:15].cpu()) |
|
|
|
|
|
if self.args.save_json: |
|
pred_masks = ops.scale_image( |
|
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), |
|
pbatch["ori_shape"], |
|
ratio_pad=batch["ratio_pad"][si], |
|
) |
|
self.pred_to_json(predn, batch["im_file"][si], pred_masks) |
|
|
|
|
|
|
|
def finalize_metrics(self, *args, **kwargs): |
|
"""Sets speed and confusion matrix for evaluation metrics.""" |
|
self.metrics.speed = self.speed |
|
self.metrics.confusion_matrix = self.confusion_matrix |
|
|
|
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False): |
|
""" |
|
Return correct prediction matrix. |
|
|
|
Args: |
|
detections (array[N, 6]), x1, y1, x2, y2, conf, class |
|
labels (array[M, 5]), class, x1, y1, x2, y2 |
|
|
|
Returns: |
|
correct (array[N, 10]), for 10 IoU levels |
|
""" |
|
if masks: |
|
if overlap: |
|
nl = len(gt_cls) |
|
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 |
|
gt_masks = gt_masks.repeat(nl, 1, 1) |
|
gt_masks = torch.where(gt_masks == index, 1.0, 0.0) |
|
if gt_masks.shape[1:] != pred_masks.shape[1:]: |
|
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0] |
|
gt_masks = gt_masks.gt_(0.5) |
|
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) |
|
else: |
|
iou = box_iou(gt_bboxes, detections[:, :4]) |
|
|
|
return self.match_predictions(detections[:, 5], gt_cls, iou) |
|
|
|
def plot_val_samples(self, batch, ni): |
|
"""Plots validation samples with bounding box labels.""" |
|
plot_images( |
|
batch["img"], |
|
batch["batch_idx"], |
|
batch["cls"].squeeze(-1), |
|
batch["bboxes"], |
|
masks=batch["masks"], |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg", |
|
names=self.names, |
|
on_plot=self.on_plot, |
|
) |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots batch predictions with masks and bounding boxes.""" |
|
plot_images( |
|
batch["img"], |
|
*output_to_target(preds[0], max_det=15), |
|
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, |
|
paths=batch["im_file"], |
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg", |
|
names=self.names, |
|
on_plot=self.on_plot, |
|
) |
|
self.plot_masks.clear() |
|
|
|
def pred_to_json(self, predn, filename, pred_masks): |
|
""" |
|
Save one JSON result. |
|
|
|
Examples: |
|
>>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} |
|
""" |
|
from pycocotools.mask import encode |
|
|
|
def single_encode(x): |
|
"""Encode predicted masks as RLE and append results to jdict.""" |
|
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0] |
|
rle["counts"] = rle["counts"].decode("utf-8") |
|
return rle |
|
|
|
stem = Path(filename).stem |
|
image_id = int(stem) if stem.isnumeric() else stem |
|
box = ops.xyxy2xywh(predn[:, :4]) |
|
box[:, :2] -= box[:, 2:] / 2 |
|
pred_masks = np.transpose(pred_masks, (2, 0, 1)) |
|
with ThreadPool(NUM_THREADS) as pool: |
|
rles = pool.map(single_encode, pred_masks) |
|
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): |
|
self.jdict.append( |
|
{ |
|
"image_id": image_id, |
|
"category_id": self.class_map[int(p[5])], |
|
"bbox": [round(x, 3) for x in b], |
|
"score": round(p[4], 5), |
|
"segmentation": rles[i], |
|
} |
|
) |
|
|
|
def eval_json(self, stats): |
|
"""Return COCO-style object detection evaluation metrics.""" |
|
if self.args.save_json and self.is_coco and len(self.jdict): |
|
anno_json = self.data["path"] / "annotations/instances_val2017.json" |
|
pred_json = self.save_dir / "predictions.json" |
|
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...") |
|
try: |
|
check_requirements("pycocotools>=2.0.6") |
|
from pycocotools.coco import COCO |
|
from pycocotools.cocoeval import COCOeval |
|
|
|
for x in anno_json, pred_json: |
|
assert x.is_file(), f"{x} file not found" |
|
anno = COCO(str(anno_json)) |
|
pred = anno.loadRes(str(pred_json)) |
|
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]): |
|
if self.is_coco: |
|
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] |
|
eval.evaluate() |
|
eval.accumulate() |
|
eval.summarize() |
|
idx = i * 4 + 2 |
|
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[ |
|
:2 |
|
] |
|
except Exception as e: |
|
LOGGER.warning(f"pycocotools unable to run: {e}") |
|
return stats |
|
|