File size: 8,840 Bytes
32652fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
comments: true
description: VisionEye View Object Mapping using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Tracking, IDetection, VisionEye, Computer Vision, Notebook, IPython Kernel, CLI, Python SDK
---

# VisionEye View Object Mapping using Ultralytics YOLOv8 πŸš€

## What is VisionEye Object Mapping?

[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) VisionEye offers the capability for computers to identify and pinpoint objects, simulating the observational precision of the human eye. This functionality enables computers to discern and focus on specific objects, much like the way the human eye observes details from a particular viewpoint.

## Samples

|                                                                        VisionEye View                                                                        |                                                                        VisionEye View With Object Tracking                                                                        |                                                                 VisionEye View With Distance Calculation                                                                  |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![VisionEye View Object Mapping using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/7d593acc-2e37-41b0-ad0e-92b4ffae6647) | ![VisionEye View Object Mapping with Object Tracking using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/fcd85952-390f-451e-8fb0-b82e943af89c) | ![VisionEye View with Distance Calculation using Ultralytics YOLOv8](https://github.com/RizwanMunawar/RizwanMunawar/assets/62513924/18c4dafe-a22e-4fa9-a7d4-2bb293562a95) |
|                                                    VisionEye View Object Mapping using Ultralytics YOLOv8                                                    |                                                    VisionEye View Object Mapping with Object Tracking using Ultralytics YOLOv8                                                    |                                                     VisionEye View with Distance Calculation using Ultralytics YOLOv8                                                     |

!!! Example "VisionEye Object Mapping using YOLOv8"

    === "VisionEye Object Mapping"

        ```python
        import cv2
        from ultralytics import YOLO
        from ultralytics.utils.plotting import colors, Annotator

        model = YOLO("yolov8n.pt")
        names = model.model.names
        cap = cv2.VideoCapture("path/to/video/file.mp4")
        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

        out = cv2.VideoWriter('visioneye-pinpoint.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))

        center_point = (-10, h)

        while True:
            ret, im0 = cap.read()
            if not ret:
                print("Video frame is empty or video processing has been successfully completed.")
                break

            results = model.predict(im0)
            boxes = results[0].boxes.xyxy.cpu()
            clss = results[0].boxes.cls.cpu().tolist()

            annotator = Annotator(im0, line_width=2)

            for box, cls in zip(boxes, clss):
                annotator.box_label(box, label=names[int(cls)], color=colors(int(cls)))
                annotator.visioneye(box, center_point)

            out.write(im0)
            cv2.imshow("visioneye-pinpoint", im0)

            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

        out.release()
        cap.release()
        cv2.destroyAllWindows()
        ```

    === "VisionEye Object Mapping with Object Tracking"

        ```python
        import cv2
        from ultralytics import YOLO
        from ultralytics.utils.plotting import colors, Annotator

        model = YOLO("yolov8n.pt")
        cap = cv2.VideoCapture("path/to/video/file.mp4")
        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

        out = cv2.VideoWriter('visioneye-pinpoint.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))

        center_point = (-10, h)

        while True:
            ret, im0 = cap.read()
            if not ret:
                print("Video frame is empty or video processing has been successfully completed.")
                break

            annotator = Annotator(im0, line_width=2)

            results = model.track(im0, persist=True)
            boxes = results[0].boxes.xyxy.cpu()

            if results[0].boxes.id is not None:
                track_ids = results[0].boxes.id.int().cpu().tolist()

                for box, track_id in zip(boxes, track_ids):
                    annotator.box_label(box, label=str(track_id), color=colors(int(track_id)))
                    annotator.visioneye(box, center_point)

            out.write(im0)
            cv2.imshow("visioneye-pinpoint", im0)

            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

        out.release()
        cap.release()
        cv2.destroyAllWindows()
        ```
    
    === "VisionEye with Distance Calculation"
    
        ```python
        import cv2
        import math
        from ultralytics import YOLO
        from ultralytics.utils.plotting import Annotator, colors
        
        model = YOLO("yolov8s.pt")
        cap = cv2.VideoCapture("Path/to/video/file.mp4")
        
        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
        
        out = cv2.VideoWriter('visioneye-distance-calculation.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))
        
        center_point = (0, h)
        pixel_per_meter = 10
        
        txt_color, txt_background, bbox_clr = ((0, 0, 0), (255, 255, 255), (255, 0, 255))
        
        while True:
            ret, im0 = cap.read()
            if not ret:
                print("Video frame is empty or video processing has been successfully completed.")
                break
        
            annotator = Annotator(im0, line_width=2)
        
            results = model.track(im0, persist=True)
            boxes = results[0].boxes.xyxy.cpu()
        
            if results[0].boxes.id is not None:
                track_ids = results[0].boxes.id.int().cpu().tolist()
        
                for box, track_id in zip(boxes, track_ids):
                    annotator.box_label(box, label=str(track_id), color=bbox_clr)
                    annotator.visioneye(box, center_point)
        
                    x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)    # Bounding box centroid
        
                    distance = (math.sqrt((x1 - center_point[0]) ** 2 + (y1 - center_point[1]) ** 2))/pixel_per_meter
        
                    text_size, _ = cv2.getTextSize(f"Distance: {distance:.2f} m", cv2.FONT_HERSHEY_SIMPLEX,1.2, 3)
                    cv2.rectangle(im0, (x1, y1 - text_size[1] - 10),(x1 + text_size[0] + 10, y1), txt_background, -1)
                    cv2.putText(im0, f"Distance: {distance:.2f} m",(x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 1.2,txt_color, 3)
        
            out.write(im0)
            cv2.imshow("visioneye-distance-calculation", im0)
        
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        
        out.release()
        cap.release()
        cv2.destroyAllWindows()
        ```

### `visioneye` Arguments

| Name          | Type    | Default          | Description                                      |
|---------------|---------|------------------|--------------------------------------------------|
| `color`       | `tuple` | `(235, 219, 11)` | Line and object centroid color                   |
| `pin_color`   | `tuple` | `(255, 0, 255)`  | VisionEye pinpoint color                         |
| `thickness`   | `int`   | `2`              | pinpoint to object line thickness                |
| `pins_radius` | `int`   | `10`             | Pinpoint and object centroid point circle radius |

## Note

For any inquiries, feel free to post your questions in the [Ultralytics Issue Section](https://github.com/ultralytics/ultralytics/issues/new/choose) or the discussion section mentioned below.