|
|
|
|
|
import torch |
|
|
|
from ultralytics.engine.predictor import BasePredictor |
|
from ultralytics.engine.results import Results |
|
from ultralytics.utils import ops |
|
|
|
|
|
class NASPredictor(BasePredictor): |
|
""" |
|
Ultralytics YOLO NAS Predictor for object detection. |
|
|
|
This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the |
|
raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and |
|
scaling the bounding boxes to fit the original image dimensions. |
|
|
|
Attributes: |
|
args (Namespace): Namespace containing various configurations for post-processing. |
|
|
|
Example: |
|
```python |
|
from ultralytics import NAS |
|
|
|
model = NAS('yolo_nas_s') |
|
predictor = model.predictor |
|
# Assumes that raw_preds, img, orig_imgs are available |
|
results = predictor.postprocess(raw_preds, img, orig_imgs) |
|
``` |
|
|
|
Note: |
|
Typically, this class is not instantiated directly. It is used internally within the `NAS` class. |
|
""" |
|
|
|
def postprocess(self, preds_in, img, orig_imgs): |
|
"""Postprocess predictions and returns a list of Results objects.""" |
|
|
|
|
|
boxes = ops.xyxy2xywh(preds_in[0][0]) |
|
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1) |
|
|
|
preds = ops.non_max_suppression( |
|
preds, |
|
self.args.conf, |
|
self.args.iou, |
|
agnostic=self.args.agnostic_nms, |
|
max_det=self.args.max_det, |
|
classes=self.args.classes, |
|
) |
|
|
|
if not isinstance(orig_imgs, list): |
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) |
|
|
|
results = [] |
|
for i, pred in enumerate(preds): |
|
orig_img = orig_imgs[i] |
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) |
|
img_path = self.batch[0][i] |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) |
|
return results |
|
|