File size: 9,293 Bytes
b112894
45630b8
b112894
 
 
 
 
 
 
 
 
 
 
 
45630b8
b112894
 
45630b8
b112894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import annotations
import gradio as gr
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')
import subprocess
def runcmd(command):
    ret = subprocess.run(command,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE,encoding="utf-8",timeout=60)
    if ret.returncode == 0:
        print("success:",ret)
    else:
        print("error:",ret)
runcmd("pip3 install --upgrade clueai")

import clueai
cl = clueai.Client("", check_api_key=False)

'''
#luck_t2i_btn_1, #luck_s2i_btn_1, #luck_i2i_btn_1, #luck_ici_btn_1{
            color: #fff;
            --tw-gradient-from: #BED336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #BED336;
            border-color: #BED336;
        }

        #luck_easy_btn_1, #luck_iti_btn_1, #luck_tsi_btn_1, #luck_isi_btn_1{
            color: #fff;
            --tw-gradient-from: #BED336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #BED336;
            border-color: #BED336;
        }
'''
css='''
        .container { max-width: 800px; margin: auto; }
        #gen_btn_1{
            color: #fff;
            --tw-gradient-from: #f44336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #ff9800;
            border-color: #ff9800; 
        }
        #t2i_btn_1, #s2i_btn_1, #i2i_btn_1, #ici_btn_1, #easy_btn_1, #iti_btn_1, #tsi_btn_1, #isi_btn_1{
            color: #fff;
            --tw-gradient-from: #f44336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #ff9800;
            border-color: #ff9800;
        }
        

        #import_t2i_btn_1, #import_s2i_btn_1, #import_i2i_btn_1, #import_ici_btn_1{
            color: #fff;
            --tw-gradient-from: #BED336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #BED336;
            border-color: #BED336;
        }

        #import_easy_btn_1, #import_iti_btn_1, #import_tsi_btn_1, #import_isi_btn_1{
            color: #fff;
            --tw-gradient-from: #BED336;
            --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
            --tw-gradient-to: #BED336;
            border-color: #BED336;
        }

        #record_btn{
            
        }
        #record_btn > div > button > span {
            width: 2.375rem;
            height: 2.375rem;
        }
        #record_btn > div > button > span > span {
            width: 2.375rem;
            height: 2.375rem;
        }
        audio {
            margin-bottom: 10px;
        }
        div#record_btn > .mt-6{
            margin-top: 0!important;
        }
        div#record_btn > .mt-6 button {
            font-size: 1em;
            width: 100%;
            padding: 20px;
            height: 60px;
        }

        div#txt2img_tab {
            color: #BED336;
        }

'''
task_styles = []
examples_list = []
task_style_to_task_prefix = {}
import csv
def read_examples(input_file):
    header = True
    with open(input_file) as finput:
        csv_input = csv.reader(finput)
        for line in csv_input:
            if header:
                header = False
                continue
            task_style, task_prefix, example = line
            task_styles.append(task_style)
            task_style_to_task_prefix[task_style] = task_prefix
            examples_list.append([task_style, example])

read_examples("./examples.csv")
#print(task_styles)
def preprocess(text, task):
    if task == "问答":
        text = text.replace("?", ":").replace("?", ":")
        text = text + ":"

    return task_style_to_task_prefix[task] + "\n" + text + "\n答案:"
      
def inference_gen(text, task):
    text = preprocess(text, task)
    #print(text)
    try:
        prediction = cl.generate(
            model_name='clueai-base',
            prompt=text)
    except Exception as e:
        logger.error(f"error, e")
        return

    return prediction.generations[0].text
     
t2i_default_img_path_list = []
import base64, requests
from io import BytesIO
from PIL import Image
def inference_image(text, n_text, guidance_scale, style, shape, clarity, steps, shape_scale):
    try:
        res = requests.get(f"https://www.clueai.cn/clueai/hf_text2image?text={text}")
    except Exception as e:
        logger.error(f"error, {e}")
        return 
    json_dict = res.json()
    file_path_list = []
    for i, image in enumerate(json_dict["images"]):
        image = image.encode('utf-8')
        binary_data = base64.b64decode(image)
        img_data = BytesIO(binary_data)
        img = Image.open(img_data)
        file_path_list.append(img)

    return file_path_list
image_styles = ['无', '细节大师', '对称美', '虚拟引擎', '空间感', '机械风格', '形状艺术', '治愈', '电影构图', '电影构图(治愈)', '荒芜感', '漫画', '逃离艺术', '斯皮尔伯格', '幻想', '杰作', '壁画', '朦胧', '黑白(3d)', '梵高', '毕加索', '莫奈', '丰子恺', '现代', '欧美']
with gr.Blocks(css=css, title="ClueAI") as demo:
    gr.Markdown('<h1><center><font color=red style="font-size:50px;">ClueAI全能师</font></center></h1>')
    with gr.TabItem("文本生成", id='_tab'):   
        with gr.Row(variant="compact").style( equal_height=True):
            text = gr.Textbox("俄罗斯天然气管道泄漏爆炸",
                label="编辑内容", show_label=False, max_lines=20, 
                placeholder="在这里输入...",
            )
        task = gr.Dropdown(label="任务", show_label=True, choices=task_styles, value="标题生成文章")
        btn = gr.Button("生成",elem_id="gen_btn_1").style(full_width=False)
        with gr.Accordion("高级操作", open=False):
            n_text = gr.Textbox("",
                label="不想要生成的元素", show_label=True, max_lines=2, 
                placeholder="在这里输入你不需要包含的内容...",
            )     
            guidance_scale = gr.Slider(1, 20, value=7.5, step=0.5, label="和你的描述匹配程度,越大越匹配")
            shape = gr.Radio(["1x1", "16x9", "手机壁纸"], label="尺寸", value="1x1")
            shape_scale = gr.Radio([1, 2, 3], label="对图放大倍数", value=1)
            steps = gr.Slider(10, 150, value=50, step=1, label="越大质量越好,生成时间越长")
            clarity = gr.Radio(["标清", "高清"], label="清晰度", value="标清")
        with gr.Row(variant="compact").style( equal_height=True):
            output_text = gr.Textbox(
                    label="输出", show_label=True, max_lines=50, 
                    placeholder="在这里展示结果",
                )
        gr.Examples(examples_list, [task, text], label="示例")
        input_params = [text, task]
        #text.submit(inference_gen, inputs=input_params, outputs=output_text)
        btn.click(inference_gen, inputs=input_params, outputs=output_text)

    with gr.TabItem("图像生成", id='txt2img_tab'):   
        with gr.Row(variant="compact").style( equal_height=True):
            text = gr.Textbox("美丽的风景",
                label="编辑内容", show_label=False, max_lines=2, 
                placeholder="在这里输入你的描述...",
            )
            btn = gr.Button("生成图像",elem_id="t2i_btn_1").style(full_width=False)
            
        with gr.Row().style( equal_height=True):
            generate_prompt_btn = gr.Button("手气不错", elem_id="luck_t2i_btn_1")

        style = gr.Dropdown(label="风格", show_label=True, choices=image_styles, value="无")
        with gr.Accordion("高级操作", open=False):
            n_text = gr.Textbox("",
                label="不想要生成的元素", show_label=True, max_lines=2, 
                placeholder="在这里输入你不需要包含的内容...",
            )     
            guidance_scale = gr.Slider(1, 20, value=7.5, step=0.5, label="和你的描述匹配程度,越大越匹配")
            shape = gr.Radio(["1x1", "16x9", "手机壁纸"], label="尺寸", value="1x1")
            shape_scale = gr.Radio([1, 2, 3], label="对图放大倍数", value=1)
            steps = gr.Slider(10, 150, value=50, step=1, label="越大质量越好,生成时间越长")
            clarity = gr.Radio(["标清", "高清"], label="清晰度", value="标清")

        gr.Examples(["秋日的晚霞", "星空", "室内装修", "婚礼鲜花"], text, label="示例")
        
        t2i_gallery = gr.Gallery(
            t2i_default_img_path_list,
            label="生成图像",
             show_label=False).style(
            grid=[2], height="auto"
        )

        input_params = [text, n_text, guidance_scale, style, shape, clarity, steps, shape_scale]
        generate_prompt_btn.click(inference_image, inputs=input_params, outputs=[t2i_gallery])
        text.submit(inference_image, inputs=input_params, outputs=t2i_gallery)
        btn.click(inference_image, inputs=input_params, outputs=t2i_gallery)
demo.launch()