kbora's picture
Update blocks/text2img.py
390745f
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list
from .utils.prompt2prompt import generate
from .utils.device import get_device
from .download import get_share_js, community_icon_html, loading_icon_html, CSS
#--- create a download button that takes the output image from gradio and downloads it
TEXT2IMG_MODEL_LIST = {
"OpenJourney v4" : "prompthero/openjourney-v4",
"StableDiffusion 1.5" : "runwayml/stable-diffusion-v1-5",
"StableDiffusion 2.1" : "stabilityai/stable-diffusion-2-1",
"DreamLike 1.0" : "dreamlike-art/dreamlike-diffusion-1.0",
"DreamLike 2.0" : "dreamlike-art/dreamlike-photoreal-2.0",
"DreamShaper" : "Lykon/DreamShaper",
"NeverEnding-Dream" : "Lykon/NeverEnding-Dream"
}
class StableDiffusionText2ImageGenerator:
def __init__(self):
self.pipe = None
def load_model(
self,
model_path,
scheduler
):
model_path = TEXT2IMG_MODEL_LIST[model_path]
if self.pipe is None:
self.pipe = StableDiffusionPipeline.from_pretrained(
model_path, safety_checker=None, torch_dtype=torch.float32
)
device = get_device()
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
self.pipe.to(device)
self.pipe.enable_attention_slicing()
return self.pipe
def generate_image(
self,
model_path: str,
prompt: str,
negative_prompt: str,
scheduler: str,
guidance_scale: int,
num_inference_step: int,
height: int,
width: int,
seed_generator=0,
):
print("model_path", model_path)
print("prompt", prompt)
print("negative_prompt", negative_prompt)
print("num_images_per_prompt", 1)
print("scheduler", scheduler)
print("guidance_scale", guidance_scale)
print("num_inference_step", num_inference_step)
print("height", height)
print("width", width)
print("seed_generator", seed_generator)
pipe = self.load_model(
model_path=model_path,
scheduler=scheduler,
)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
images = pipe(
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_images_per_prompt=1,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return images
def app(username : str = "admin"):
demo = gr.Blocks(css = CSS)
with demo:
with gr.Row():
with gr.Column():
text2image_prompt = gr.Textbox(
lines=1,
show_label=False,
elem_id="prompt-text-input",
value='',
placeholder="Prompt, keywords that describe your image"
)
text2image_negative_prompt = gr.Textbox(
lines=1,
show_label=False,
elem_id = "negative-prompt-text-input",
value='',
placeholder="Negative Prompt, keywords that describe what you don't want in your image",
)
# add button for generating a prompt from the prompt
text2image_prompt_generate_button = gr.Button(
label="Generate Prompt",
type="primary",
align="center",
value = "Generate Prompt"
)
# show a text box with the generated prompt
text2image_prompt_generated_prompt = gr.Textbox(
lines=1,
placeholder="Generated Prompt",
show_label=False,
info="Auto generated prompts for inspiration.",
)
text2image_model_path = gr.Dropdown(
choices=list(TEXT2IMG_MODEL_LIST.keys()),
value=list(TEXT2IMG_MODEL_LIST.keys())[0],
label="Text2Image Model Selection",
elem_id="model-dropdown",
info="Select the model you want to use for text2image generation."
)
text2image_scheduler = gr.Dropdown(
choices=SCHEDULER_LIST,
value=SCHEDULER_LIST[0],
label="Scheduler",
elem_id="scheduler-dropdown",
info="Scheduler list for models. Different schdulers result in different outputs."
)
text2image_size = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=768,
label="Image Size",
elem_id="image-size-slider",
info = "Image size determines the height and width of the generated image. Higher the value, better the quality however slower the computation."
)
text2image_seed_generator = gr.Slider(
label="Seed(0 for random)",
minimum=0,
maximum=1000000,
value=0,
elem_id="seed-slider",
info="Set the seed to a specific value to reproduce the results."
)
text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
elem_id = "guidance-scale-slider",
info = "Guidance scale determines how much the prompt will affect the image. Higher the value, more the effect."
)
text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
elem_id = "num-inference-step-slider",
info = "Number of inference step determines the quality of the image. Higher the number, better the quality."
)
text2image_predict = gr.Button(value="Generate image")
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2), height='auto')
with gr.Group(elem_id="container-advanced-btns"):
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Save artwork", elem_id="share-btn")
gr.HTML(
"""
<div id="model-description-text2img">
<h3>Text2Image Models</h3>
<p>Text to image models will generate an image guided by the prompt that is provided</p>
<p>A prompt should be specified with keywords that describe the image you want to generate.</p>
<p>Negative prompt can be used to specify keywords that you don't want in your image such as "blood" or "violence".</p>
<p>Example prompt: "A painting of a cat sitting on a chair, fantasy themed, starry background"</p>
<hr>
<p>Stable Diffusion 1.5 & 2.1: Default model for many tasks. </p>
<p>OpenJourney v4: Generates fantasy themed images similar to the Midjourney model. </p>
<p>Dreamlike Photoreal 1.0 & 2.0 is SD 1.5 that generates realistic images. </p>
</div>
"""
)
text2image_predict.click(
fn=StableDiffusionText2ImageGenerator().generate_image,
inputs=[
text2image_model_path,
text2image_prompt,
text2image_negative_prompt,
text2image_scheduler,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_size,
text2image_size,
text2image_seed_generator,
],
outputs=output_image,
)
text2image_prompt_generate_button.click(
fn=generate,
inputs=[text2image_prompt],
outputs=[text2image_prompt_generated_prompt],
)
# share_button.click(
# None,
# [],
# [],
# _js=get_share_js(),
# )
# autoclik the share button
return demo