Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from langchain_text_splitters import RecursiveCharacterTextSplitter
|
2 |
+
# from qdrant_client import QdrantClient
|
3 |
+
# from langchain_openai.embeddings import OpenAIEmbeddings
|
4 |
+
# from langchain_core.prompts import ChatPromptTemplate
|
5 |
+
# from langchain_core.globals import set_llm_cache
|
6 |
+
# from langchain_openai import ChatOpenAI
|
7 |
+
# from langchain_core.caches import InMemoryCache
|
8 |
+
# from operator import itemgetter
|
9 |
+
# from langchain_core.runnables.passthrough import RunnablePassthrough
|
10 |
+
# from langchain_qdrant import QdrantVectorStore, Qdrant
|
11 |
+
import chainlit as cl
|
12 |
+
|
13 |
+
# chat_model = ChatOpenAI(model="gpt-4o-mini")
|
14 |
+
# te3_small = OpenAIEmbeddings(model="text-embedding-3-small")
|
15 |
+
# set_llm_cache(InMemoryCache())
|
16 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=100)
|
17 |
+
# rag_system_prompt_template = """\
|
18 |
+
# You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
|
19 |
+
# """
|
20 |
+
# rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},]
|
21 |
+
# rag_user_prompt_template = """\
|
22 |
+
# Question:
|
23 |
+
# {question}
|
24 |
+
# Context:
|
25 |
+
# {context}
|
26 |
+
# """
|
27 |
+
# chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)])
|
28 |
+
|
29 |
+
@cl.on_chat_start
|
30 |
+
async def on_chat_start():
|
31 |
+
await cl.Message(content="Ask away!").send()
|
32 |
+
|
33 |
+
@cl.author_rename
|
34 |
+
def rename(orig_author: str):
|
35 |
+
return "AI Assistant"
|
36 |
+
|
37 |
+
@cl.on_message
|
38 |
+
async def main(message: cl.Message):
|
39 |
+
await cl.Message(content="Response").send()
|