from langchain_text_splitters import RecursiveCharacterTextSplitter from qdrant_client import QdrantClient from langchain_openai.embeddings import OpenAIEmbeddings from langchain_core.prompts import ChatPromptTemplate from langchain_core.globals import set_llm_cache from langchain_openai import ChatOpenAI from langchain_core.caches import InMemoryCache from operator import itemgetter from langchain_core.runnables.passthrough import RunnablePassthrough from langchain_qdrant import QdrantVectorStore, Qdrant import chainlit as cl import os # chat_model = ChatOpenAI(model="gpt-4o-mini") # te3_small = OpenAIEmbeddings(model="text-embedding-3-small") # set_llm_cache(InMemoryCache()) # text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=100) # rag_system_prompt_template = """\ # You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. # """ # rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] # rag_user_prompt_template = """\ # Question: # {question} # Context: # {context} # """ # chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) @cl.on_chat_start async def on_chat_start(): await cl.Message(content="Ask away!").send() @cl.author_rename def rename(orig_author: str): return "AI Assistant" @cl.on_message async def main(message: cl.Message): await cl.Message(content="Response").send()