File size: 860 Bytes
fa1c49a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import gradio as gr
from PIL import Image
import diffusers
import torch
from diffusers import StableDiffusionPipeline
from huggingface_hub import login
login(token="insert your token here")
# Load the model
model_id = "insert your model path like CoWork/fullers-sdv2-1-768-object-fullersamberale001-v1"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
def inference(prompt, num_samples):
all_images = []
prompt_update = 'insert your trained concept name like fullersamberale001' + prompt
images = pipe(prompt_update, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images
all_images.extend(images)
return all_images
# Create Gradio interface
iface = gr.Interface(
fn=inference,
inputs=["textbox", "slider"],
outputs="gallery",
)
iface.launch() |