Spaces:
Sleeping
Sleeping
File size: 4,385 Bytes
298d093 7893023 298d093 5bf91a7 298d093 80e4775 298d093 8274878 298d093 8274878 298d093 5bf91a7 8274878 5bf91a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import cohere
import streamlit as st
from serpapi import GoogleSearch
import requests
from geopy.geocoders import Nominatim
from PIL import Image
from io import BytesIO
st.title("Hi there!👨⚕️🩺")
st.title("Welcome to *Virtual Diagnosis*")
st.write("> **This app is meant to assist medical professionals ONLY**")
co = cohere.Client(st.secrets["COHERE_API"])
prompt = st.text_input('What are the symptoms of your patient? (*Try to keep the symptoms meaningful*)')
prompt_med = st.text_input('Search a medicine here: (*Enter the correct spelling of the medicine*)')
geolocator = Nominatim(user_agent="geoapiExercises")
def get_coordinates(location):
try:
location = geolocator.geocode(location)
return (location.latitude, location.longitude)
except:
return None
with open('symptoms_1.txt', 'r') as file:
symptoms = [line.strip().lower() for line in file]
if prompt:
if any(symptom in prompt.lower() for symptom in symptoms):
response = co.generate(
model = 'command-xlarge-nightly', #xlarge #medium #small
prompt = f"user: Suggest prescription medications for these symptoms: {prompt}\nTLDR:", #
max_tokens=300,
temperature=0.9,
k=0,
p=0.75,
frequency_penalty=0,
presence_penalty=0,
stop_sequences=[],
return_likelihoods='NONE'
)
text = format(response.generations[0].text)
st.write('Prescription medications: %s' %text)
st.download_button('Download example prescriptions', text)
print("done!")
params = {
"engine": "google_shopping",
"google_domain": "google.com",
"q": text,
"api_key": st.secrets["GOOGLE_API"]
}
search = GoogleSearch(params)
items = search.get_dict()
for key, result in items.items():
if "google_shopping_url" in result:
st.caption(f'<a href="{result["google_shopping_url"]}">Click here for Google search page', unsafe_allow_html=True)
else:
pass
for i in range(10):
item = items['shopping_results'][i]
response = requests.get(item['thumbnail'])
st.image(Image.open(BytesIO(response.content)),
caption=item['title'], width=400)
st.text(item['source'])
st.text(item['price'])
st.caption(f'<a href="{item["link"]}">Click to buy</a>', unsafe_allow_html=True)
address = st.text_input("Enter your location to search pharmacies near you: ( For best results, enter location in this *format: Area, City, Country*.)")
if address:
coordinates = get_coordinates(address)
params = {
"engine": "google_maps",
"q": "Pharmacies",
"ll": "@" + str(coordinates[0]) + "," + str(coordinates[1]) + ",15.1z",
"type": "search",
"api_key": st.secrets["GOOGLE_API"]
}
search = GoogleSearch(params)
results = search.get_dict()
local_results = results["local_results"]
for x in range(5):
st.write("Name of pharmacy: ", local_results[x]["title"])
st.write("address of pharmacy: ", local_results[x]["address"])
else:
st.write("Kindly pertain your inputs to possible medical symptoms only. Or try rephrasing.")
if prompt_med:
params = {
"engine": "google_shopping",
"google_domain": "google.com",
"q": f"{prompt_med} medicine",
"hl": "en",
# "gl": "in",
"api_key": st.secrets["GOOGLE_API"]
}
search = GoogleSearch(params)
items = search.get_dict()
for key, result in items.items():
if "google_shopping_url" in result:
st.caption(f'<a href="{result["google_shopping_url"]}">Click here for Google search page', unsafe_allow_html=True)
else:
pass
for i in range(10):
item = items['shopping_results'][i]
response = requests.get(item['thumbnail'])
st.image(Image.open(BytesIO(response.content)),
caption=item['title'], width=400)
st.text(item['source'])
st.text(item['price'])
st.caption(f'<a href="{item["link"]}">Click to buy</a>', unsafe_allow_html=True) |