import cohere
import streamlit as st
from serpapi import GoogleSearch
import requests
from geopy.geocoders import Nominatim
from PIL import Image
from io import BytesIO
st.title("Hi there!👨⚕️🩺")
st.title("Welcome to *Virtual Diagnosis*")
st.write("> **This app is meant to assist medical professionals ONLY**")
co = cohere.Client('QV5Gd5mELJPltvQm4kN8EH4ORFycFlun14ulhhSf')
prompt = st.text_input('What are the symptoms of your patient? (*Try to keep the symptoms meaningful*)')
prompt_med = st.text_input('Search a medicine here: (*Enter the correct spelling of the medicine*)')
geolocator = Nominatim(user_agent="geoapiExercises")
def get_coordinates(location):
try:
location = geolocator.geocode(location)
return (location.latitude, location.longitude)
except:
return None
with open('symptoms_1.txt', 'r') as file:
symptoms = [line.strip().lower() for line in file]
if prompt:
if any(symptom in prompt.lower() for symptom in symptoms):
response = co.generate(
model = 'command-xlarge-nightly', #xlarge #medium #small
prompt = f"user: Suggest prescription medications for these symptoms: {prompt}\nTLDR:", #
max_tokens=300,
temperature=0.9,
k=0,
p=0.75,
frequency_penalty=0,
presence_penalty=0,
stop_sequences=[],
return_likelihoods='NONE'
)
text = format(response.generations[0].text)
st.write('Prescription medications: %s' %text)
st.download_button('Download example prescriptions', text)
print("done!")
params = {
"engine": "google_shopping",
"google_domain": "google.com",
"q": text,
"api_key": "5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"b8d49a5c3c62ba62246db77325afba425c5caf490079cc213c10d920006f4d92" "47e0ad25f66753bef13f195a4700f446bde4100454876d5ac6445c3822814b7b"
}
search = GoogleSearch(params)
items = search.get_dict()
for key, result in items.items():
if "google_shopping_url" in result:
st.caption(f'Click here for Google search page', unsafe_allow_html=True)
else:
pass
for i in range(10):
item = items['shopping_results'][i]
response = requests.get(item['thumbnail'])
st.image(Image.open(BytesIO(response.content)),
caption=item['title'], width=400)
st.text(item['source'])
st.text(item['price'])
st.caption(f'Click to buy', unsafe_allow_html=True)
address = st.text_input("Enter your location to search pharmacies near you: ( For best results, enter location in this *format: Area, City, Country*.)")
if address:
coordinates = get_coordinates(address)
params = {
"engine": "google_maps",
"q": "Pharmacies",
"ll": "@" + str(coordinates[0]) + "," + str(coordinates[1]) + ",15.1z",
"type": "search",
"api_key": "5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"b8d49a5c3c62ba62246db77325afba425c5caf490079cc213c10d920006f4d92"#"5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"47e0ad25f66753bef13f195a4700f446bde4100454876d5ac6445c3822814b7b"
}
search = GoogleSearch(params)
results = search.get_dict()
local_results = results["local_results"]
for x in range(5):
st.write("Name of pharmacy: ", local_results[x]["title"])
st.write("address of pharmacy: ", local_results[x]["address"])
else:
st.write("Kindly pertain your inputs to possible medical symptoms only. Or try rephrasing.")
if prompt_med:
params = {
"engine": "google_shopping",
"google_domain": "google.com",
"q": f"{prompt_med} medicine",
"hl": "en",
# "gl": "in",
"api_key": "5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"b8d49a5c3c62ba62246db77325afba425c5caf490079cc213c10d920006f4d92"#"5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"47e0ad25f66753bef13f195a4700f446bde4100454876d5ac6445c3822814b7b"
}
search = GoogleSearch(params)
items = search.get_dict()
for key, result in items.items():
if "google_shopping_url" in result:
st.caption(f'Click here for Google search page', unsafe_allow_html=True)
else:
pass
for i in range(10):
item = items['shopping_results'][i]
response = requests.get(item['thumbnail'])
st.image(Image.open(BytesIO(response.content)),
caption=item['title'], width=400)
st.text(item['source'])
st.text(item['price'])
st.caption(f'Click to buy', unsafe_allow_html=True)