import cohere import streamlit as st from serpapi import GoogleSearch import requests from geopy.geocoders import Nominatim from PIL import Image from io import BytesIO st.title("Hi there!👨‍⚕️🩺") st.title("Welcome to *Virtual Diagnosis*") st.write("> **This app is meant to assist medical professionals ONLY**") co = cohere.Client('QV5Gd5mELJPltvQm4kN8EH4ORFycFlun14ulhhSf') prompt = st.text_input('What are the symptoms of your patient? (*Try to keep the symptoms meaningful*)') prompt_med = st.text_input('Search a medicine here: (*Enter the correct spelling of the medicine*)') geolocator = Nominatim(user_agent="geoapiExercises") def get_coordinates(location): try: location = geolocator.geocode(location) return (location.latitude, location.longitude) except: return None with open('symptoms_1.txt', 'r') as file: symptoms = [line.strip().lower() for line in file] if prompt: if any(symptom in prompt.lower() for symptom in symptoms): response = co.generate( model = 'command-xlarge-nightly', #xlarge #medium #small prompt = f"user: Suggest prescription medications for these symptoms: {prompt}\nTLDR:", # max_tokens=300, temperature=0.9, k=0, p=0.75, frequency_penalty=0, presence_penalty=0, stop_sequences=[], return_likelihoods='NONE' ) text = format(response.generations[0].text) st.write('Prescription medications: %s' %text) st.download_button('Download example prescriptions', text) print("done!") params = { "engine": "google_shopping", "google_domain": "google.com", "q": text, "api_key": "5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"b8d49a5c3c62ba62246db77325afba425c5caf490079cc213c10d920006f4d92" "47e0ad25f66753bef13f195a4700f446bde4100454876d5ac6445c3822814b7b" } search = GoogleSearch(params) items = search.get_dict() for key, result in items.items(): if "google_shopping_url" in result: st.caption(f'Click here for Google search page', unsafe_allow_html=True) else: pass for i in range(10): item = items['shopping_results'][i] response = requests.get(item['thumbnail']) st.image(Image.open(BytesIO(response.content)), caption=item['title'], width=400) st.text(item['source']) st.text(item['price']) st.caption(f'Click to buy', unsafe_allow_html=True) address = st.text_input("Enter your location to search pharmacies near you: ( For best results, enter location in this *format: Area, City, Country*.)") if address: coordinates = get_coordinates(address) params = { "engine": "google_maps", "q": "Pharmacies", "ll": "@" + str(coordinates[0]) + "," + str(coordinates[1]) + ",15.1z", "type": "search", "api_key": "5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"b8d49a5c3c62ba62246db77325afba425c5caf490079cc213c10d920006f4d92"#"5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"47e0ad25f66753bef13f195a4700f446bde4100454876d5ac6445c3822814b7b" } search = GoogleSearch(params) results = search.get_dict() local_results = results["local_results"] for x in range(5): st.write("Name of pharmacy: ", local_results[x]["title"]) st.write("address of pharmacy: ", local_results[x]["address"]) else: st.write("Kindly pertain your inputs to possible medical symptoms only. Or try rephrasing.") if prompt_med: params = { "engine": "google_shopping", "google_domain": "google.com", "q": f"{prompt_med} medicine", "hl": "en", # "gl": "in", "api_key": "5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"b8d49a5c3c62ba62246db77325afba425c5caf490079cc213c10d920006f4d92"#"5fab2158fd9fa6cb16925fd2ae13dc7d62d369d3b882074a8ab5a1a7225a034c" #"47e0ad25f66753bef13f195a4700f446bde4100454876d5ac6445c3822814b7b" } search = GoogleSearch(params) items = search.get_dict() for key, result in items.items(): if "google_shopping_url" in result: st.caption(f'Click here for Google search page', unsafe_allow_html=True) else: pass for i in range(10): item = items['shopping_results'][i] response = requests.get(item['thumbnail']) st.image(Image.open(BytesIO(response.content)), caption=item['title'], width=400) st.text(item['source']) st.text(item['price']) st.caption(f'Click to buy', unsafe_allow_html=True)