File size: 21,121 Bytes
12a115f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dca8737
 
 
f7c28f7
 
eb9e06f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a115f
 
28e89ec
12a115f
 
 
 
 
 
 
 
 
 
 
 
 
1212c0e
bf087cf
12a115f
 
 
 
 
 
 
 
1212c0e
bf087cf
12a115f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212c0e
bf087cf
dca8737
 
60673ef
 
c44b260
dca8737
60673ef
dca8737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a115f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb9e06f
 
 
 
12a115f
eb9e06f
 
 
 
 
 
 
 
 
 
 
 
 
12a115f
eb9e06f
 
 
 
f7c28f7
eb9e06f
12a115f
eb9e06f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a115f
 
eb9e06f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a115f
eb9e06f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a115f
 
eb9e06f
12a115f
eb9e06f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a115f
eb9e06f
12a115f
 
 
 
 
 
 
 
 
 
eb9e06f
 
 
 
 
12a115f
eb9e06f
 
 
12a115f
 
eb9e06f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import os
import openai
import wget
import streamlit as st
from PIL import Image
from serpapi import GoogleSearch
import torch
from diffusers import StableDiffusionPipeline
from bokeh.models.widgets import Button
from bokeh.models import CustomJS
from streamlit_bokeh_events import streamlit_bokeh_events
import base64
from streamlit_player import st_player
from pytube import YouTube
from pytube import Search
import io
import warnings
from PIL import Image
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
from datetime import datetime
from google.oauth2 import service_account
from googleapiclient.discovery import build
import wget
import urllib.request
import sqlite3
import pandas as pd
import pandasql as ps

def clean(value):
    val = value.replace("'",'').replace("[",'').replace("]",'')
    return val

def save_uploadedfile(uploadedfile):
    with open(uploadedfile.name,"wb") as f:
        f.write(uploadedfile.getbuffer())

def gpt3(texts):
    # openai.api_key = os.environ["Secret"]
    openai.api_key = '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'#'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' #'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'
    response = openai.Completion.create(
    engine="text-davinci-002",
    prompt= texts,
        temperature=temp,
        max_tokens=750,
        top_p=1,
        frequency_penalty=0.0,          
        presence_penalty=0.0,
        stop = (";", "/*", "</code>"))
    x = response.choices[0].text 
    return x

def warning(sqlOutput):
    dl = []
    lst = ['DELETE','DROP','TRUNCATE','MERGE','ALTER','UPDATE','INSERT']
    op2 = " ".join(sqlOutput.split())
    op3 = op2.split(' ')
    op4 = list(map(lambda x: x.upper(), op3))
    for i in op4:
        if i in lst: 
            dl.append(i)
    for i in dl:
        st.warning("This query will " + i + " the data ",icon="⚠️")


stability_api = client.StabilityInference(
    key=st.secrets["STABILITY_KEY"], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference.
    verbose=True, # Print debug messages.
    engine="stable-diffusion-v1-5", # Set the engine to use for generation.
    # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0
    # stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-inpainting-v1-0 stable-inpainting-512-v2-0
)

def search_internet(question):
    params = {
        "q": question,
        "location": "Bengaluru, Karnataka, India",
        "hl": "hi",
        "gl": "in",
        "google_domain": "google.co.in",
        # "api_key": ""
        "api_key": st.secrets["GOOGLE_API"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API']
    }

    params = {
        "q": question,
        "location": "Bengaluru, Karnataka, India",
        "hl": "hi",
        "gl": "in",
        "google_domain": "google.co.in",
        # "api_key": ""
        "api_key": st.secrets["GOOGLE_API"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API']
    }

    search = GoogleSearch(params)
    results = search.get_dict()
    organic_results = results["organic_results"]
  

    snippets = ""
    counter = 1
    for item in organic_results:
        snippets += str(counter) + ". " + item.get("snippet", "") + '\n' + item['about_this_result']['source']['source_info_link'] + '\n'
        counter += 1

    # snippets

    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=f'''following are snippets from google search with these as knowledge base only answer questions and print  reference link as well followed by answer. \n\n {snippets}\n\n question-{question}\n\nAnswer-''',
        temperature=0.49,
        max_tokens=256,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0)

    string_temp = response.choices[0].text
    st.write(string_temp)
    st.write(snippets)

# openai.api_key = ""
openai.api_key = st.secrets["OPENAI_KEY"] #os.environ("OPENAI_KEY") #os.environ['OPENAI_KEY']
date_time = str(datetime.now())

# dictionary = st.secrets("GSHEET_KEY")
# json_object = json.dumps(dictionary, indent=4)

def g_sheet_log(myinput, output):
  SERVICE_ACCOUNT_FILE = 'gsheet.json'

  credentials = service_account.Credentials.from_service_account_file(
      filename=SERVICE_ACCOUNT_FILE
  )

  service_sheets = build('sheets', 'v4', credentials=credentials)

  GOOGLE_SHEETS_ID = '16cM8lHm7n_X0ZVLgWfL5fcBhvKWIGO9LQz3zCl2Dn_8'
  worksheet_name = 'Prompt_Logs!'
  cell_range_insert = 'A:C'

  values = (
      (myinput, output, date_time),
  )

  value_range_body = {
      'majorDimension' : 'ROWS',
      'values' : values
  }

  service_sheets.spreadsheets().values().append(
      spreadsheetId=GOOGLE_SHEETS_ID,
      valueInputOption='USER_ENTERED',
      range=worksheet_name + cell_range_insert,
      body=value_range_body
  ).execute()


def openai_response(PROMPT):
    response = openai.Image.create(
    prompt=PROMPT,
    n=1,
    size="256x256",
)
    return response["data"][0]["url"]

#page_bg_img = """
#<style>
#[data-testid="stAppViewContainer"] {
#background-color: #ffffff;
#opacity: 0.8;
#background-image:  repeating-radial-gradient( circle at 0 0, transparent 0, #ffffff 40px ), repeating-linear-gradient( #55a6f655, #55a6f6 );
#}
#</style>
#"""

#st.markdown(page_bg_img, unsafe_allow_html=True)
st.title("Welcome to :red[_HyperChat_]!!🤖")
st.title("How can I help?")

Usage = st.radio(
    "I want to ask:",
    ('Random Questions', 'Questions based on custom CSV data')
)

if Usage == 'Questions based on custom CSV data':
    option = ['Reset','Upload_csv']
    res = st.selectbox('Select the Upload_csv option:',option)
    if res == 'Upload_csv':
        uploaded_file = st.file_uploader("Add dataset (csv) ",type=['csv'])
        if uploaded_file is not None:
            st.write("File Uploaded")
            file_name=uploaded_file.name     
            ext=file_name.split(".")[0]
            st.write(ext)
            df=pd.read_csv(uploaded_file)
            save_uploadedfile(uploaded_file)
            col= df.columns
            try:
                columns = str((df.columns).tolist())
                column = clean(columns)
                st.write('Columns:' )
                st.text(col)
            except:
                pass
    
        temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
        
        if st.checkbox('Use Prompt'):
            with st.form(key='columns_in_form2'):
                col3, col4 = st.columns(2)
            with col3:
                userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
                submitButton = st.form_submit_button(label = 'Submit')
                if submitButton:
                    try:
                        col_p ="Create SQL statement from instruction.  "+ext+" " " (" + column +")." +" Request:" + userPrompt  + "SQL statement:" 
                        result = gpt3(col_p)
                    except:    
                        results = gpt3(userPrompt)
                    st.success('loaded')
            with col4:
                try:
                    sqlOutput = st.text_area('SQL Query', value=gpt3(col_p))
                    warning(sqlOutput) 
                    cars=pd.read_csv('cars.csv')
                    result_tab2=ps.sqldf(sqlOutput)
                    st.write(result_tab2)
                    with open("fewshot_matplot.txt", "r") as file:
                                text_plot = file.read()
    
                    result_tab = result_tab2.reset_index(drop=True)
                    result_tab_string = result_tab.to_string()
                    gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: " 
                    
                    if len(gr_prompt) > 4097:
                        st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
                        st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
                    
                    elif len(result_tab2.columns) < 2:
                        st.write("I need more data to conduct analysis and provide visualizations for you... ^_^") 
    
                    else:
                        st.success("Plotting...")
                        response_graph = openai.Completion.create(
                                engine="text-davinci-003",
                                prompt = gr_prompt,
                                max_tokens=1024,
                                n=1,
                                stop=None,
                                temperature=0.5,
                            )
                        
                        if response_graph['choices'][0]['text'] != "":    
                            print(response_graph['choices'][0]['text'])
                            exec(response_graph['choices'][0]['text'])
                        
                        else:
                            print('Retry! Graph could not be plotted *_*')
    
                except:
                    pass
    

elif Usage == 'Random Questions':
    Input_type = st.radio(
        "**Input type:**",
        ('TEXT', 'SPEECH')
        )
    
    if Input_type == 'TEXT':
        #page_bg_img2 = """
        #<style>
        #[data-testid="stAppViewContainer"] {
        #background-color: #e5e5f7;
        #opacity: 0.8;
        #background-size: 20px 20px;
        #background-image:  repeating-linear-gradient(0deg, #32d947, #32d947 1px, #e5e5f7 1px, #e5e5f7);
        #}
        #</style>
        #"""
        #st.markdown(page_bg_img, unsafe_allow_html=True)
        st.write('**You are now in Text input mode**')
        mytext = st.text_input('**Go on! Ask me anything:**')
        if st.button("SUBMIT"):
            question=mytext
            response = openai.Completion.create(
              model="text-davinci-003",
              prompt=f'''Your name is alexa and  knowledge cutoff date is 2021-09, and it is not aware of any events after that time. if the  
                        Answer to following questions is not  from your knowledge base or in case of queries like weather 
                          updates / stock updates / current news Etc which requires you to have internet connection  then print i don't have access to internet to answer your question, 
                          if  question is related to  image or  painting or drawing generation then print ipython type output   function gen_draw("detailed prompt of image to be generated")
                          if the question is related to playing a song or video or music of a singer then print ipython type output  function vid_tube("relevent search query")
                          if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") . 
                          if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)")
                          \nQuestion-{question}
                          \nAnswer -''',
              temperature=0.49,
              max_tokens=256,
              top_p=1,
              frequency_penalty=0,
              presence_penalty=0
            )
            string_temp=response.choices[0].text
    
            if ("gen_draw" in string_temp):
                try:
                    try:
                        wget.download(openai_response(prompt))
                        img2 = Image.open(wget.download(openai_response(prompt)))
                        img2.show()
                        rx = 'Image returned'
                        g_sheet_log(mytext, rx)
                    except:
                        urllib.request.urlretrieve(openai_response(prompt),"img_ret.png")
                        img = Image.open("img_ret.png")
                        img.show()
                        rx = 'Image returned'
                        g_sheet_log(mytext, rx)
                except:
                    # Set up our initial generation parameters.
                    answers = stability_api.generate(
                    prompt = mytext,
                    seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
                            # What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
                            # Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
                    steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
                    cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
                        # Setting this value higher increases the strength in which it tries to match your prompt.
                        # Defaults to 7.0 if not specified.
                    width=512, # Generation width, defaults to 512 if not included.
                    height=512, # Generation height, defaults to 512 if not included.
                    samples=1, # Number of images to generate, defaults to 1 if not included.
                    sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
                                                        # Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
                                                        # (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
                    )
    
                    # Set up our warning to print to the console if the adult content classifier is tripped.
                    # If adult content classifier is not tripped, save generated images.
                    for resp in answers:
                        for artifact in resp.artifacts:
                            if artifact.finish_reason == generation.FILTER:
                                warnings.warn(
                                    "Your request activated the API's safety filters and could not be processed."
                                    "Please modify the prompt and try again.")
                            if artifact.type == generation.ARTIFACT_IMAGE:
                                img = Image.open(io.BytesIO(artifact.binary))
                                st.image(img)
                                img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
                                rx = 'Image returned'
                                g_sheet_log(mytext, rx)
                                
                # except:        
                #     st.write('image is being generated please wait...')
                #     def extract_image_description(input_string):
                #         return input_string.split('gen_draw("')[1].split('")')[0]
                #     prompt=extract_image_description(string_temp)
                #     # model_id = "CompVis/stable-diffusion-v1-4"
                #     model_id='runwayml/stable-diffusion-v1-5'
                #     device = "cuda"
    
    
                #     pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
                #     pipe = pipe.to(device)
    
                #     # prompt = "a photo of an astronaut riding a horse on mars"
                #     image = pipe(prompt).images[0]  
                    
                #     image.save("astronaut_rides_horse.png")
                #     st.image(image)
                #     # image
    
            elif ("vid_tube" in string_temp):
                s = Search(mytext)
                search_res = s.results
                first_vid = search_res[0]
                print(first_vid)
                string = str(first_vid)
                video_id = string[string.index('=') + 1:-1]
                # print(video_id)
                YoutubeURL = "https://www.youtube.com/watch?v="
                OurURL = YoutubeURL + video_id
                st.write(OurURL)
                st_player(OurURL)
                ry = 'Youtube link and video returned'
                g_sheet_log(mytext, ry)
    
            elif ("don't" in string_temp or "internet" in string_temp):
                st.write('searching internet ')
                search_internet(question)
                rz = 'Internet result returned'
                g_sheet_log(mytext, rz)
    
            else:
                st.write(string_temp)
                g_sheet_log(mytext, string_temp)
        
    elif Input_type == 'SPEECH':
        stt_button = Button(label="Speak", width=100)
        stt_button.js_on_event("button_click", CustomJS(code="""
            var recognition = new webkitSpeechRecognition();
            recognition.continuous = true;
            recognition.interimResults = true;
            recognition.onresult = function (e) {
                var value = "";
                for (var i = e.resultIndex; i < e.results.length; ++i) {
                    if (e.results[i].isFinal) {
                        value += e.results[i][0].transcript;
                    }
                }
                if ( value != "") {
                    document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
                }
            }
            recognition.start();
            """))
        
        result = streamlit_bokeh_events(
        stt_button,
        events="GET_TEXT",
        key="listen",
        refresh_on_update=False,
        override_height=75,
        debounce_time=0)
    
        if result:
            if "GET_TEXT" in result:
                st.write(result.get("GET_TEXT"))
                question = result.get("GET_TEXT")
                response = openai.Completion.create(
                model="text-davinci-003",
                prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the  
                          Answer to following questions is not  from your knowledge base or in case of queries like weather 
                            updates / stock updates / current news Etc which requires you to have internet connection  then print i don't have access to internet to answer your question, 
                            if  question is related to  image or  painting or drawing generation then print ipython type output   function gen_draw("detailed prompt of image to be generated")
                            if the question is related to playing a song or video or music of a singer then print ipython type output  function vid_tube("relevent search query")
                            \nQuestion-{question}
                            \nAnswer -''',
                temperature=0.49,
                max_tokens=256,
                top_p=1,
                frequency_penalty=0,
                presence_penalty=0
                )
                string_temp=response.choices[0].text
    
                if ("gen_draw" in string_temp):
                    st.write('*image is being generated please wait..* ')
                    def extract_image_description(input_string):
                        return input_string.split('gen_draw("')[1].split('")')[0]
                    prompt=extract_image_description(string_temp)
                    # model_id = "CompVis/stable-diffusion-v1-4"
                    model_id='runwayml/stable-diffusion-v1-5'
                    device = "cuda"
    
                    pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
                    pipe = pipe.to(device)
    
                    # prompt = "a photo of an astronaut riding a horse on mars"
                    image = pipe(prompt).images[0]  
                      
                    image.save("astronaut_rides_horse.png")
                    st.image(image)
                    # image 
                
                elif ("vid_tube" in string_temp):
                    s = Search(question)
                    search_res = s.results
                    first_vid = search_res[0]
                    print(first_vid)
                    string = str(first_vid)
                    video_id = string[string.index('=') + 1:-1]
                    # print(video_id)
                    YoutubeURL = "https://www.youtube.com/watch?v="
                    OurURL = YoutubeURL + video_id
                    st.write(OurURL)
                    st_player(OurURL)
    
                elif ("don't" in string_temp or "internet" in string_temp  ):
                    st.write('*searching internet*')
                    search_internet(question)
                else:
                    st.write(string_temp)