Spaces:
Sleeping
Sleeping
File size: 25,983 Bytes
12a115f dca8737 f7c28f7 eb9e06f 12a115f 28e89ec 12a115f 1212c0e bf087cf 12a115f 1212c0e bf087cf 12a115f 1212c0e bf087cf dca8737 60673ef c44b260 dca8737 60673ef dca8737 12a115f a0bef4f ac81094 a0bef4f 12a115f a0bef4f eb9e06f a0bef4f 2dce196 a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f fb1cc3a a0bef4f fb1cc3a a0bef4f fb1cc3a a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f eb9e06f a0bef4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import os
import openai
import wget
import streamlit as st
from PIL import Image
from serpapi import GoogleSearch
import torch
from diffusers import StableDiffusionPipeline
from bokeh.models.widgets import Button
from bokeh.models import CustomJS
from streamlit_bokeh_events import streamlit_bokeh_events
import base64
from streamlit_player import st_player
from pytube import YouTube
from pytube import Search
import io
import warnings
from PIL import Image
from stability_sdk import client
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
from datetime import datetime
from google.oauth2 import service_account
from googleapiclient.discovery import build
import wget
import urllib.request
import sqlite3
import pandas as pd
import pandasql as ps
def clean(value):
val = value.replace("'",'').replace("[",'').replace("]",'')
return val
def save_uploadedfile(uploadedfile):
with open(uploadedfile.name,"wb") as f:
f.write(uploadedfile.getbuffer())
def gpt3(texts):
# openai.api_key = os.environ["Secret"]
openai.api_key = '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'#'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' #'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'
response = openai.Completion.create(
engine="text-davinci-002",
prompt= texts,
temperature=temp,
max_tokens=750,
top_p=1,
frequency_penalty=0.0,
presence_penalty=0.0,
stop = (";", "/*", "</code>"))
x = response.choices[0].text
return x
def warning(sqlOutput):
dl = []
lst = ['DELETE','DROP','TRUNCATE','MERGE','ALTER','UPDATE','INSERT']
op2 = " ".join(sqlOutput.split())
op3 = op2.split(' ')
op4 = list(map(lambda x: x.upper(), op3))
for i in op4:
if i in lst:
dl.append(i)
for i in dl:
st.warning("This query will " + i + " the data ",icon="⚠️")
stability_api = client.StabilityInference(
key=st.secrets["STABILITY_KEY"], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference.
verbose=True, # Print debug messages.
engine="stable-diffusion-v1-5", # Set the engine to use for generation.
# Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0
# stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-inpainting-v1-0 stable-inpainting-512-v2-0
)
def search_internet(question):
params = {
"q": question,
"location": "Bengaluru, Karnataka, India",
"hl": "hi",
"gl": "in",
"google_domain": "google.co.in",
# "api_key": ""
"api_key": st.secrets["GOOGLE_API"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API']
}
params = {
"q": question,
"location": "Bengaluru, Karnataka, India",
"hl": "hi",
"gl": "in",
"google_domain": "google.co.in",
# "api_key": ""
"api_key": st.secrets["GOOGLE_API"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API']
}
search = GoogleSearch(params)
results = search.get_dict()
organic_results = results["organic_results"]
snippets = ""
counter = 1
for item in organic_results:
snippets += str(counter) + ". " + item.get("snippet", "") + '\n' + item['about_this_result']['source']['source_info_link'] + '\n'
counter += 1
# snippets
response = openai.Completion.create(
model="text-davinci-003",
prompt=f'''following are snippets from google search with these as knowledge base only answer questions and print reference link as well followed by answer. \n\n {snippets}\n\n question-{question}\n\nAnswer-''',
temperature=0.49,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0)
string_temp = response.choices[0].text
st.write(string_temp)
st.write(snippets)
# openai.api_key = ""
openai.api_key = st.secrets["OPENAI_KEY"] #os.environ("OPENAI_KEY") #os.environ['OPENAI_KEY']
date_time = str(datetime.now())
# dictionary = st.secrets("GSHEET_KEY")
# json_object = json.dumps(dictionary, indent=4)
def g_sheet_log(myinput, output):
SERVICE_ACCOUNT_FILE = 'gsheet.json'
credentials = service_account.Credentials.from_service_account_file(
filename=SERVICE_ACCOUNT_FILE
)
service_sheets = build('sheets', 'v4', credentials=credentials)
GOOGLE_SHEETS_ID = '16cM8lHm7n_X0ZVLgWfL5fcBhvKWIGO9LQz3zCl2Dn_8'
worksheet_name = 'Prompt_Logs!'
cell_range_insert = 'A:C'
values = (
(myinput, output, date_time),
)
value_range_body = {
'majorDimension' : 'ROWS',
'values' : values
}
service_sheets.spreadsheets().values().append(
spreadsheetId=GOOGLE_SHEETS_ID,
valueInputOption='USER_ENTERED',
range=worksheet_name + cell_range_insert,
body=value_range_body
).execute()
def openai_response(PROMPT):
response = openai.Image.create(
prompt=PROMPT,
n=1,
size="256x256",
)
return response["data"][0]["url"]
#page_bg_img = """
#<style>
#[data-testid="stAppViewContainer"] {
#background-color: #ffffff;
#opacity: 0.8;
#background-image: repeating-radial-gradient( circle at 0 0, transparent 0, #ffffff 40px ), repeating-linear-gradient( #55a6f655, #55a6f6 );
#}
#</style>
#"""
col1, col2 = st.columns(2)
with col1:
st.image('https://ibb.co/rGSj8pB')
with col2:
#st.markdown(page_bg_img, unsafe_allow_html=True)
st.title("Ask :red[Mukesh] anything!!🤖")
st.title("Puchne mai kya jaata hai??")
option_ = ['Random Questions','Questions based on custom CSV data']
Usage = st.selectbox('Select an option:', option_)
if Usage == 'Questions based on custom CSV data':
st.text('''
You can use your own custom csv files to test this feature or
you can use the sample csv file which contains data about cars.
Example question:
- How many cars were manufactured each year between 2000 to 2008?
''')
option = ['Sample_Cars_csv','Upload_csv']
res = st.selectbox('Select from below options:',option)
if res == 'Upload_csv':
uploaded_file = st.file_uploader("Add dataset (csv) ",type=['csv'])
if uploaded_file is not None:
st.write("File Uploaded")
file_name=uploaded_file.name
ext=file_name.split(".")[0]
st.write(ext)
df=pd.read_csv(uploaded_file)
save_uploadedfile(uploaded_file)
col= df.columns
try:
columns = str((df.columns).tolist())
column = clean(columns)
st.write('Columns:' )
st.text(col)
except:
pass
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
with st.form(key='columns_in_form2'):
col3, col4 = st.columns(2)
with col3:
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
submitButton = st.form_submit_button(label = 'Submit')
if submitButton:
try:
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
result = gpt3(col_p)
except:
results = gpt3(userPrompt)
st.success('loaded')
with col4:
try:
sqlOutput = st.text_area('SQL Query', value=gpt3(col_p))
warning(sqlOutput)
cars=pd.read_csv('cars.csv')
result_tab2=ps.sqldf(sqlOutput)
st.write(result_tab2)
with open("fewshot_matplot.txt", "r") as file:
text_plot = file.read()
result_tab = result_tab2.reset_index(drop=True)
result_tab_string = result_tab.to_string()
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
if len(gr_prompt) > 4097:
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
elif len(result_tab2.columns) < 2:
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
else:
st.success("Plotting...")
response_graph = openai.Completion.create(
engine="text-davinci-003",
prompt = gr_prompt,
max_tokens=1024,
n=1,
stop=None,
temperature=0.5,
)
if response_graph['choices'][0]['text'] != "":
print(response_graph['choices'][0]['text'])
exec(response_graph['choices'][0]['text'])
else:
print('Retry! Graph could not be plotted *_*')
except:
pass
elif res == "Sample_Cars_csv":
df = pd.read_csv('cars.csv')
col= df.columns
try:
columns = str((df.columns).tolist())
column = clean(columns)
st.write('Columns:' )
st.text(col)
except:
pass
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
with st.form(key='columns_in_form2'):
col3, col4 = st.columns(2)
with col3:
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
submitButton = st.form_submit_button(label = 'Submit')
if submitButton:
try:
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
result = gpt3(col_p)
except:
results = gpt3(userPrompt)
st.success('loaded')
with col4:
try:
sqlOutput = st.text_area('SQL Query', value=gpt3(col_p))
warning(sqlOutput)
cars=pd.read_csv('cars.csv')
result_tab2=ps.sqldf(sqlOutput)
st.write(result_tab2)
with open("fewshot_matplot.txt", "r") as file:
text_plot = file.read()
result_tab = result_tab2.reset_index(drop=True)
result_tab_string = result_tab.to_string()
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
if len(gr_prompt) > 4097:
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
elif len(result_tab2.columns) < 2:
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
else:
st.success("Plotting...")
response_graph = openai.Completion.create(
engine="text-davinci-003",
prompt = gr_prompt,
max_tokens=1024,
n=1,
stop=None,
temperature=0.5,
)
if response_graph['choices'][0]['text'] != "":
print(response_graph['choices'][0]['text'])
exec(response_graph['choices'][0]['text'])
else:
print('Retry! Graph could not be plotted *_*')
except:
pass
elif Usage == 'Random Questions':
st.text('''You can ask me:
1. All the things you ask ChatGPT.
2. Generating paintings, drawings, abstract art.
3. Music or Videos
4. Weather
5. Stocks
6. Current Affairs and News.
7. Create or compose tweets or Linkedin posts or email.''')
Input_type = st.radio(
"**Input type:**",
('TEXT', 'SPEECH')
)
if Input_type == 'TEXT':
#page_bg_img2 = """
#<style>
#[data-testid="stAppViewContainer"] {
#background-color: #e5e5f7;
#opacity: 0.8;
#background-size: 20px 20px;
#background-image: repeating-linear-gradient(0deg, #32d947, #32d947 1px, #e5e5f7 1px, #e5e5f7);
#}
#</style>
#"""
#st.markdown(page_bg_img, unsafe_allow_html=True)
st.write('**You are now in Text input mode**')
mytext = st.text_input('**Go on! Ask me anything:**')
if st.button("SUBMIT"):
question=mytext
response = openai.Completion.create(
model="text-davinci-003",
prompt=f'''Your name is alexa and knowledge cutoff date is 2021-09, and it is not aware of any events after that time. if the
Answer to following questions is not from your knowledge base or in case of queries like weather
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") .
if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)")
\nQuestion-{question}
\nAnswer -''',
temperature=0.49,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
string_temp=response.choices[0].text
if ("gen_draw" in string_temp):
try:
try:
wget.download(openai_response(prompt))
img2 = Image.open(wget.download(openai_response(prompt)))
img2.show()
rx = 'Image returned'
g_sheet_log(mytext, rx)
except:
urllib.request.urlretrieve(openai_response(prompt),"img_ret.png")
img = Image.open("img_ret.png")
img.show()
rx = 'Image returned'
g_sheet_log(mytext, rx)
except:
# Set up our initial generation parameters.
answers = stability_api.generate(
prompt = mytext,
seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
# Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
# Setting this value higher increases the strength in which it tries to match your prompt.
# Defaults to 7.0 if not specified.
width=512, # Generation width, defaults to 512 if not included.
height=512, # Generation height, defaults to 512 if not included.
samples=1, # Number of images to generate, defaults to 1 if not included.
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
)
# Set up our warning to print to the console if the adult content classifier is tripped.
# If adult content classifier is not tripped, save generated images.
for resp in answers:
for artifact in resp.artifacts:
if artifact.finish_reason == generation.FILTER:
warnings.warn(
"Your request activated the API's safety filters and could not be processed."
"Please modify the prompt and try again.")
if artifact.type == generation.ARTIFACT_IMAGE:
img = Image.open(io.BytesIO(artifact.binary))
st.image(img)
img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
rx = 'Image returned'
g_sheet_log(mytext, rx)
# except:
# st.write('image is being generated please wait...')
# def extract_image_description(input_string):
# return input_string.split('gen_draw("')[1].split('")')[0]
# prompt=extract_image_description(string_temp)
# # model_id = "CompVis/stable-diffusion-v1-4"
# model_id='runwayml/stable-diffusion-v1-5'
# device = "cuda"
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
# pipe = pipe.to(device)
# # prompt = "a photo of an astronaut riding a horse on mars"
# image = pipe(prompt).images[0]
# image.save("astronaut_rides_horse.png")
# st.image(image)
# # image
elif ("vid_tube" in string_temp):
s = Search(mytext)
search_res = s.results
first_vid = search_res[0]
print(first_vid)
string = str(first_vid)
video_id = string[string.index('=') + 1:-1]
# print(video_id)
YoutubeURL = "https://www.youtube.com/watch?v="
OurURL = YoutubeURL + video_id
st.write(OurURL)
st_player(OurURL)
ry = 'Youtube link and video returned'
g_sheet_log(mytext, ry)
elif ("don't" in string_temp or "internet" in string_temp):
st.write('searching internet ')
search_internet(question)
rz = 'Internet result returned'
g_sheet_log(mytext, rz)
else:
st.write(string_temp)
g_sheet_log(mytext, string_temp)
elif Input_type == 'SPEECH':
stt_button = Button(label="Speak", width=100)
stt_button.js_on_event("button_click", CustomJS(code="""
var recognition = new webkitSpeechRecognition();
recognition.continuous = true;
recognition.interimResults = true;
recognition.onresult = function (e) {
var value = "";
for (var i = e.resultIndex; i < e.results.length; ++i) {
if (e.results[i].isFinal) {
value += e.results[i][0].transcript;
}
}
if ( value != "") {
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
}
}
recognition.start();
"""))
result = streamlit_bokeh_events(
stt_button,
events="GET_TEXT",
key="listen",
refresh_on_update=False,
override_height=75,
debounce_time=0)
if result:
if "GET_TEXT" in result:
st.write(result.get("GET_TEXT"))
question = result.get("GET_TEXT")
response = openai.Completion.create(
model="text-davinci-003",
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
Answer to following questions is not from your knowledge base or in case of queries like weather
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
\nQuestion-{question}
\nAnswer -''',
temperature=0.49,
max_tokens=256,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
string_temp=response.choices[0].text
if ("gen_draw" in string_temp):
st.write('*image is being generated please wait..* ')
def extract_image_description(input_string):
return input_string.split('gen_draw("')[1].split('")')[0]
prompt=extract_image_description(string_temp)
# model_id = "CompVis/stable-diffusion-v1-4"
model_id='runwayml/stable-diffusion-v1-5'
device = "cuda"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to(device)
# prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
image.save("astronaut_rides_horse.png")
st.image(image)
# image
elif ("vid_tube" in string_temp):
s = Search(question)
search_res = s.results
first_vid = search_res[0]
print(first_vid)
string = str(first_vid)
video_id = string[string.index('=') + 1:-1]
# print(video_id)
YoutubeURL = "https://www.youtube.com/watch?v="
OurURL = YoutubeURL + video_id
st.write(OurURL)
st_player(OurURL)
elif ("don't" in string_temp or "internet" in string_temp ):
st.write('*searching internet*')
search_internet(question)
else:
st.write(string_temp)
|