Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,48 +24,12 @@ from google.oauth2 import service_account
|
|
| 24 |
from googleapiclient.discovery import build
|
| 25 |
import wget
|
| 26 |
import urllib.request
|
| 27 |
-
import sqlite3
|
| 28 |
-
import pandas as pd
|
| 29 |
-
import pandasql as ps
|
| 30 |
-
# import sounddevice as sd
|
| 31 |
-
# import soundfile as sf
|
| 32 |
|
| 33 |
-
def clean(value):
|
| 34 |
-
val = value.replace("'",'').replace("[",'').replace("]",'')
|
| 35 |
-
return val
|
| 36 |
|
| 37 |
def save_uploadedfile(uploadedfile):
|
| 38 |
with open(uploadedfile.name,"wb") as f:
|
| 39 |
f.write(uploadedfile.getbuffer())
|
| 40 |
|
| 41 |
-
def gpt3(texts):
|
| 42 |
-
# openai.api_key = os.environ["Secret"]
|
| 43 |
-
openai.api_key = st.secrets['OPENAI_KEY'] #'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'#'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' #'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'
|
| 44 |
-
response = openai.Completion.create(
|
| 45 |
-
engine="text-davinci-003",
|
| 46 |
-
prompt= texts,
|
| 47 |
-
temperature=temp,
|
| 48 |
-
max_tokens=750,
|
| 49 |
-
top_p=1,
|
| 50 |
-
frequency_penalty=0.0,
|
| 51 |
-
presence_penalty=0.0,
|
| 52 |
-
stop = (";", "/*", "</code>"))
|
| 53 |
-
x = response.choices[0].text
|
| 54 |
-
return x
|
| 55 |
-
|
| 56 |
-
def warning(sqlOutput):
|
| 57 |
-
dl = []
|
| 58 |
-
lst = ['DELETE','DROP','TRUNCATE','MERGE','ALTER','UPDATE','INSERT']
|
| 59 |
-
op2 = " ".join(sqlOutput.split())
|
| 60 |
-
op3 = op2.split(' ')
|
| 61 |
-
op4 = list(map(lambda x: x.upper(), op3))
|
| 62 |
-
for i in op4:
|
| 63 |
-
if i in lst:
|
| 64 |
-
dl.append(i)
|
| 65 |
-
for i in dl:
|
| 66 |
-
st.warning("This query will " + i + " the data ",icon="⚠️")
|
| 67 |
-
|
| 68 |
-
|
| 69 |
stability_api = client.StabilityInference(
|
| 70 |
key=st.secrets["STABILITY_KEY"], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference.
|
| 71 |
verbose=True, # Print debug messages.
|
|
@@ -253,47 +217,6 @@ def g_sheet_log(myinput, output):
|
|
| 253 |
).execute()
|
| 254 |
|
| 255 |
openai.api_key = st.secrets["OPENAI_KEY"]
|
| 256 |
-
# duration = 5
|
| 257 |
-
# fs = 44100
|
| 258 |
-
# channels = 1
|
| 259 |
-
# filename = "output.wav"
|
| 260 |
-
|
| 261 |
-
# def record_audio():
|
| 262 |
-
# myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels)
|
| 263 |
-
# sd.wait()
|
| 264 |
-
# sf.write(filename, myrecording, fs)
|
| 265 |
-
# return filename
|
| 266 |
-
# p = pyaudio.PyAudio()
|
| 267 |
-
|
| 268 |
-
# # Open the microphone stream
|
| 269 |
-
# stream = p.open(format=FORMAT,
|
| 270 |
-
# channels=CHANNELS,
|
| 271 |
-
# rate=RATE,
|
| 272 |
-
# input=True,
|
| 273 |
-
# frames_per_buffer=CHUNK)
|
| 274 |
-
|
| 275 |
-
# # Record the audio
|
| 276 |
-
# frames = []
|
| 277 |
-
# for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
|
| 278 |
-
# data = stream.read(CHUNK)
|
| 279 |
-
# frames.append(data)
|
| 280 |
-
|
| 281 |
-
# # Close the microphone stream
|
| 282 |
-
# stream.stop_stream()
|
| 283 |
-
# stream.close()
|
| 284 |
-
# p.terminate()
|
| 285 |
-
|
| 286 |
-
# # Save the recorded audio to a WAV file
|
| 287 |
-
# wf = wave.open("output.mp3", "wb")
|
| 288 |
-
# wf.setnchannels(CHANNELS)
|
| 289 |
-
# wf.setsampwidth(p.get_sample_size(FORMAT))
|
| 290 |
-
# wf.setframerate(RATE)
|
| 291 |
-
# wf.writeframes(b"".join(frames))
|
| 292 |
-
# wf.close()
|
| 293 |
-
|
| 294 |
-
# # Return the path to the recorded audio file
|
| 295 |
-
# return "output.mp3"
|
| 296 |
-
|
| 297 |
|
| 298 |
def openai_response(PROMPT):
|
| 299 |
response = openai.Image.create(
|
|
@@ -306,392 +229,186 @@ def openai_response(PROMPT):
|
|
| 306 |
st.title("Hi! :red[HyperBot] here!!🤖⭐️")
|
| 307 |
st.title("Go on ask me anything!!")
|
| 308 |
|
| 309 |
-
st.
|
| 310 |
-
⭐️ HyperBot is your virtual assistant powered by Whisper /
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
| 315 |
''')
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
|
| 326 |
-
- How many cars were manufactured each year between 2000 to 2008?
|
| 327 |
-
''')
|
| 328 |
-
|
| 329 |
-
option = ['Sample_Cars_csv','Upload_csv']
|
| 330 |
-
res = st.selectbox('Select from below options:',option)
|
| 331 |
-
if res == 'Upload_csv':
|
| 332 |
-
uploaded_file = st.file_uploader("Add dataset (csv) ",type=['csv'])
|
| 333 |
-
if uploaded_file is not None:
|
| 334 |
-
st.write("File Uploaded")
|
| 335 |
-
file_name=uploaded_file.name
|
| 336 |
-
ext=file_name.split(".")[0]
|
| 337 |
-
st.write(ext)
|
| 338 |
-
df=pd.read_csv(uploaded_file)
|
| 339 |
-
save_uploadedfile(uploaded_file)
|
| 340 |
-
col= df.columns
|
| 341 |
try:
|
| 342 |
-
columns = str((df.columns).tolist())
|
| 343 |
-
column = clean(columns)
|
| 344 |
-
st.write('Columns:' )
|
| 345 |
-
st.text(col)
|
| 346 |
-
except:
|
| 347 |
-
pass
|
| 348 |
-
|
| 349 |
-
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
|
| 350 |
-
|
| 351 |
-
with st.form("Form Layout Upload_csv"):
|
| 352 |
-
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
| 353 |
-
submitButton = st.form_submit_button(label = 'Submit')
|
| 354 |
-
|
| 355 |
-
if submitButton:
|
| 356 |
-
try:
|
| 357 |
-
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
| 358 |
-
result = gpt3(col_p)
|
| 359 |
-
sqlOutput = result #st.text_area('SQL Query', value=gpt3(col_p))
|
| 360 |
-
warning(sqlOutput)
|
| 361 |
-
result_tab2=ps.sqldf(sqlOutput)
|
| 362 |
-
st.write(result_tab2)
|
| 363 |
-
with open("fewshot_matplot.txt", "r") as file:
|
| 364 |
-
text_plot = file.read()
|
| 365 |
-
|
| 366 |
-
result_tab = result_tab2.reset_index(drop=True)
|
| 367 |
-
result_tab_string = result_tab.to_string()
|
| 368 |
-
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
| 369 |
-
|
| 370 |
-
if len(gr_prompt) > 4097:
|
| 371 |
-
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
| 372 |
-
st.write('As of today, the NLP model text-davinci-003/gpt-3.5-turbo that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
| 373 |
-
|
| 374 |
-
elif len(result_tab2.columns) < 2:
|
| 375 |
-
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
| 376 |
-
|
| 377 |
-
else:
|
| 378 |
-
st.success("Plotting...")
|
| 379 |
-
response_graph = openai.Completion.create(
|
| 380 |
-
engine="text-davinci-003",
|
| 381 |
-
prompt = gr_prompt,
|
| 382 |
-
max_tokens=1024,
|
| 383 |
-
n=1,
|
| 384 |
-
stop=None,
|
| 385 |
-
temperature=0.5,
|
| 386 |
-
)
|
| 387 |
-
|
| 388 |
-
if response_graph['choices'][0]['text'] != "":
|
| 389 |
-
print(response_graph['choices'][0]['text'])
|
| 390 |
-
exec(response_graph['choices'][0]['text'])
|
| 391 |
-
|
| 392 |
-
else:
|
| 393 |
-
print('Retry! Graph could not be plotted *_*')
|
| 394 |
-
|
| 395 |
-
except:
|
| 396 |
-
results = gpt3(userPrompt)
|
| 397 |
-
st.success('loaded')
|
| 398 |
-
|
| 399 |
-
elif res == "Sample_Cars_csv":
|
| 400 |
-
df = pd.read_csv('cars.csv')
|
| 401 |
-
col= df.columns
|
| 402 |
-
try:
|
| 403 |
-
columns = str((df.columns).tolist())
|
| 404 |
-
column = clean(columns)
|
| 405 |
-
st.write('Columns:' )
|
| 406 |
-
st.text(col)
|
| 407 |
-
except:
|
| 408 |
-
pass
|
| 409 |
-
|
| 410 |
-
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
|
| 411 |
-
|
| 412 |
-
with st.form("Form Layout Custom_csv"):
|
| 413 |
-
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
| 414 |
-
submitButton = st.form_submit_button(label = 'Submit')
|
| 415 |
-
|
| 416 |
-
if submitButton:
|
| 417 |
try:
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
st.write(result_tab2)
|
| 424 |
-
|
| 425 |
-
with open("fewshot_matplot.txt", "r") as file:
|
| 426 |
-
text_plot = file.read()
|
| 427 |
-
|
| 428 |
-
result_tab = result_tab2.reset_index(drop=True)
|
| 429 |
-
result_tab_string = result_tab.to_string()
|
| 430 |
-
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
| 431 |
-
|
| 432 |
-
if len(gr_prompt) > 4097:
|
| 433 |
-
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
| 434 |
-
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
| 435 |
-
|
| 436 |
-
elif len(result_tab2.columns) < 2:
|
| 437 |
-
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
| 438 |
-
|
| 439 |
-
else:
|
| 440 |
-
st.success("Plotting...")
|
| 441 |
-
response_graph = openai.Completion.create(
|
| 442 |
-
engine="text-davinci-003",
|
| 443 |
-
prompt = gr_prompt,
|
| 444 |
-
max_tokens=1024,
|
| 445 |
-
n=1,
|
| 446 |
-
stop=None,
|
| 447 |
-
temperature=0.5,
|
| 448 |
-
)
|
| 449 |
-
|
| 450 |
-
if response_graph['choices'][0]['text'] != "":
|
| 451 |
-
print(response_graph['choices'][0]['text'])
|
| 452 |
-
exec(response_graph['choices'][0]['text'])
|
| 453 |
-
|
| 454 |
-
else:
|
| 455 |
-
print('Retry! Graph could not be plotted *_*')
|
| 456 |
-
except:
|
| 457 |
-
results = gpt3(userPrompt)
|
| 458 |
-
st.success('loaded')
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
elif Usage == 'Ask me anything!😊':
|
| 462 |
-
st.text('''You can ask me:
|
| 463 |
-
1. All the things you ask ChatGPT.
|
| 464 |
-
2. Generating paintings, drawings, abstract art.
|
| 465 |
-
3. Music or Videos
|
| 466 |
-
4. Weather
|
| 467 |
-
5. Stocks
|
| 468 |
-
6. Current Affairs and News.
|
| 469 |
-
7. Create or compose tweets or Linkedin posts or email.''')
|
| 470 |
-
|
| 471 |
-
Input_type = st.radio(
|
| 472 |
-
"**Input type:**",
|
| 473 |
-
('TEXT', 'SPEECH')
|
| 474 |
-
)
|
| 475 |
-
|
| 476 |
-
if Input_type == 'TEXT':
|
| 477 |
-
st.write('**You are now in Text input mode**')
|
| 478 |
-
mytext = st.text_input('**Go on! Ask me anything:**')
|
| 479 |
-
if st.button("SUBMIT"):
|
| 480 |
-
question=mytext
|
| 481 |
-
response = openai.Completion.create(
|
| 482 |
-
model="text-davinci-003",
|
| 483 |
-
prompt=f'''Your name is HyperBot and knowledge cutoff date is 2021-09, and you are not aware of any events after that time. if the
|
| 484 |
-
Answer to following questions is not from your knowledge base or in case of queries like weather
|
| 485 |
-
updates / stock updates / current news or people which requires you to have internet connection then print i don't have access to internet to answer your question,
|
| 486 |
-
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
| 487 |
-
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
| 488 |
-
if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") .
|
| 489 |
-
if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)")
|
| 490 |
-
\nQuestion-{question}
|
| 491 |
-
\nAnswer -''',
|
| 492 |
-
temperature=0.49,
|
| 493 |
-
max_tokens=256,
|
| 494 |
-
top_p=1,
|
| 495 |
-
frequency_penalty=0,
|
| 496 |
-
presence_penalty=0
|
| 497 |
-
)
|
| 498 |
-
string_temp=response.choices[0].text
|
| 499 |
-
|
| 500 |
-
if ("gen_draw" in string_temp):
|
| 501 |
-
try:
|
| 502 |
-
try:
|
| 503 |
-
wget.download(openai_response(prompt))
|
| 504 |
-
img2 = Image.open(wget.download(openai_response(prompt)))
|
| 505 |
-
img2.show()
|
| 506 |
-
rx = 'Image returned'
|
| 507 |
-
g_sheet_log(mytext, rx)
|
| 508 |
-
except:
|
| 509 |
-
urllib.request.urlretrieve(openai_response(prompt),"img_ret.png")
|
| 510 |
-
img = Image.open("img_ret.png")
|
| 511 |
-
img.show()
|
| 512 |
-
rx = 'Image returned'
|
| 513 |
-
g_sheet_log(mytext, rx)
|
| 514 |
except:
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
warnings.warn(
|
| 539 |
-
"Your request activated the API's safety filters and could not be processed."
|
| 540 |
-
"Please modify the prompt and try again.")
|
| 541 |
-
if artifact.type == generation.ARTIFACT_IMAGE:
|
| 542 |
-
img = Image.open(io.BytesIO(artifact.binary))
|
| 543 |
-
st.image(img)
|
| 544 |
-
img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
|
| 545 |
-
rx = 'Image returned'
|
| 546 |
-
g_sheet_log(mytext, rx)
|
| 547 |
-
|
| 548 |
-
# except:
|
| 549 |
-
# st.write('image is being generated please wait...')
|
| 550 |
-
# def extract_image_description(input_string):
|
| 551 |
-
# return input_string.split('gen_draw("')[1].split('")')[0]
|
| 552 |
-
# prompt=extract_image_description(string_temp)
|
| 553 |
-
# # model_id = "CompVis/stable-diffusion-v1-4"
|
| 554 |
-
# model_id='runwayml/stable-diffusion-v1-5'
|
| 555 |
-
# device = "cuda"
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 559 |
-
# pipe = pipe.to(device)
|
| 560 |
-
|
| 561 |
-
# # prompt = "a photo of an astronaut riding a horse on mars"
|
| 562 |
-
# image = pipe(prompt).images[0]
|
| 563 |
-
|
| 564 |
-
# image.save("astronaut_rides_horse.png")
|
| 565 |
-
# st.image(image)
|
| 566 |
-
# # image
|
| 567 |
-
|
| 568 |
-
elif ("vid_tube" in string_temp):
|
| 569 |
-
s = Search(mytext)
|
| 570 |
-
search_res = s.results
|
| 571 |
-
first_vid = search_res[0]
|
| 572 |
-
print(first_vid)
|
| 573 |
-
string = str(first_vid)
|
| 574 |
-
video_id = string[string.index('=') + 1:-1]
|
| 575 |
-
# print(video_id)
|
| 576 |
-
YoutubeURL = "https://www.youtube.com/watch?v="
|
| 577 |
-
OurURL = YoutubeURL + video_id
|
| 578 |
-
st.write(OurURL)
|
| 579 |
-
st_player(OurURL)
|
| 580 |
-
ry = 'Youtube link and video returned'
|
| 581 |
-
g_sheet_log(mytext, ry)
|
| 582 |
-
|
| 583 |
-
elif ("don't" in string_temp or "internet" in string_temp):
|
| 584 |
-
st.write('searching internet ')
|
| 585 |
-
search_internet(question)
|
| 586 |
-
rz = 'Internet result returned'
|
| 587 |
-
g_sheet_log(mytext, string_temp)
|
| 588 |
-
|
| 589 |
-
else:
|
| 590 |
-
st.write(string_temp)
|
| 591 |
-
g_sheet_log(mytext, string_temp)
|
| 592 |
-
|
| 593 |
-
elif Input_type == 'SPEECH':
|
| 594 |
-
option_speech = st.selectbox(
|
| 595 |
-
'Choose from below: (Options for Transcription)',
|
| 596 |
-
('Use Microphone', 'OpenAI Whisper (Upload audio file)')
|
| 597 |
-
)
|
| 598 |
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
}
|
| 616 |
}
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
key="listen",
|
| 624 |
-
refresh_on_update=False,
|
| 625 |
-
override_height=75,
|
| 626 |
-
debounce_time=0)
|
| 627 |
-
|
| 628 |
-
if result:
|
| 629 |
-
if "GET_TEXT" in result:
|
| 630 |
-
question = result.get("GET_TEXT")
|
| 631 |
-
response = openai.Completion.create(
|
| 632 |
-
model="text-davinci-003",
|
| 633 |
-
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
| 634 |
-
Answer to following questions is not from your knowledge base or in case of queries like weather
|
| 635 |
-
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
| 636 |
-
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
| 637 |
-
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
| 638 |
-
\nQuestion-{question}
|
| 639 |
-
\nAnswer -''',
|
| 640 |
-
temperature=0.49,
|
| 641 |
-
max_tokens=256,
|
| 642 |
-
top_p=1,
|
| 643 |
-
frequency_penalty=0,
|
| 644 |
-
presence_penalty=0
|
| 645 |
-
)
|
| 646 |
-
string_temp=response.choices[0].text
|
| 647 |
-
|
| 648 |
-
if ("gen_draw" in string_temp):
|
| 649 |
-
st.write('*image is being generated please wait..* ')
|
| 650 |
-
def extract_image_description(input_string):
|
| 651 |
-
return input_string.split('gen_draw("')[1].split('")')[0]
|
| 652 |
-
prompt=extract_image_description(string_temp)
|
| 653 |
-
# model_id = "CompVis/stable-diffusion-v1-4"
|
| 654 |
-
model_id='runwayml/stable-diffusion-v1-5'
|
| 655 |
-
device = "cuda"
|
| 656 |
-
|
| 657 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 658 |
-
pipe = pipe.to(device)
|
| 659 |
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
elif ("vid_tube" in string_temp):
|
| 668 |
-
s = Search(question)
|
| 669 |
-
search_res = s.results
|
| 670 |
-
first_vid = search_res[0]
|
| 671 |
-
print(first_vid)
|
| 672 |
-
string = str(first_vid)
|
| 673 |
-
video_id = string[string.index('=') + 1:-1]
|
| 674 |
-
# print(video_id)
|
| 675 |
-
YoutubeURL = "https://www.youtube.com/watch?v="
|
| 676 |
-
OurURL = YoutubeURL + video_id
|
| 677 |
-
st.write(OurURL)
|
| 678 |
-
st_player(OurURL)
|
| 679 |
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
else:
|
| 684 |
-
st.write(string_temp)
|
| 685 |
-
|
| 686 |
-
elif option_speech == 'OpenAI Whisper (Upload audio file)':
|
| 687 |
-
audio_file = st.file_uploader("Upload Audio file",type=['wav', 'mp3'])
|
| 688 |
-
if audio_file is not None:
|
| 689 |
-
# file = open(audio_file, "rb")
|
| 690 |
-
st.audio(audio_file)
|
| 691 |
-
transcription = openai.Audio.transcribe("whisper-1", audio_file)
|
| 692 |
-
st.write(transcription["text"])
|
| 693 |
-
result = transcription["text"]
|
| 694 |
-
question = result
|
| 695 |
response = openai.Completion.create(
|
| 696 |
model="text-davinci-003",
|
| 697 |
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
|
@@ -707,7 +424,6 @@ elif Usage == 'Ask me anything!😊':
|
|
| 707 |
frequency_penalty=0,
|
| 708 |
presence_penalty=0
|
| 709 |
)
|
| 710 |
-
|
| 711 |
string_temp=response.choices[0].text
|
| 712 |
|
| 713 |
if ("gen_draw" in string_temp):
|
|
@@ -747,77 +463,70 @@ elif Usage == 'Ask me anything!😊':
|
|
| 747 |
search_internet(question)
|
| 748 |
else:
|
| 749 |
st.write(string_temp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 750 |
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 762 |
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
# presence_penalty=0
|
| 782 |
-
# )
|
| 783 |
-
# string_temp=response.choices[0].text
|
| 784 |
-
|
| 785 |
-
# if ("gen_draw" in string_temp):
|
| 786 |
-
# st.write('*image is being generated please wait..* ')
|
| 787 |
-
# def extract_image_description(input_string):
|
| 788 |
-
# return input_string.split('gen_draw("')[1].split('")')[0]
|
| 789 |
-
# prompt=extract_image_description(string_temp)
|
| 790 |
-
# # model_id = "CompVis/stable-diffusion-v1-4"
|
| 791 |
-
# model_id='runwayml/stable-diffusion-v1-5'
|
| 792 |
-
# device = "cuda"
|
| 793 |
-
|
| 794 |
-
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 795 |
-
# pipe = pipe.to(device)
|
| 796 |
-
|
| 797 |
-
# # prompt = "a photo of an astronaut riding a horse on mars"
|
| 798 |
-
# image = pipe(prompt).images[0]
|
| 799 |
-
|
| 800 |
-
# image.save("astronaut_rides_horse.png")
|
| 801 |
-
# st.image(image)
|
| 802 |
-
# # image
|
| 803 |
-
|
| 804 |
-
# elif ("vid_tube" in string_temp):
|
| 805 |
-
# s = Search(question)
|
| 806 |
-
# search_res = s.results
|
| 807 |
-
# first_vid = search_res[0]
|
| 808 |
-
# print(first_vid)
|
| 809 |
-
# string = str(first_vid)
|
| 810 |
-
# video_id = string[string.index('=') + 1:-1]
|
| 811 |
-
# # print(video_id)
|
| 812 |
-
# YoutubeURL = "https://www.youtube.com/watch?v="
|
| 813 |
-
# OurURL = YoutubeURL + video_id
|
| 814 |
-
# st.write(OurURL)
|
| 815 |
-
# st_player(OurURL)
|
| 816 |
-
|
| 817 |
-
# elif ("don't" in string_temp or "internet" in string_temp ):
|
| 818 |
-
# st.write('*searching internet*')
|
| 819 |
-
# search_internet(question)
|
| 820 |
-
# else:
|
| 821 |
-
# st.write(string_temp)
|
| 822 |
else:
|
| 823 |
pass
|
|
|
|
| 24 |
from googleapiclient.discovery import build
|
| 25 |
import wget
|
| 26 |
import urllib.request
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def save_uploadedfile(uploadedfile):
|
| 30 |
with open(uploadedfile.name,"wb") as f:
|
| 31 |
f.write(uploadedfile.getbuffer())
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
stability_api = client.StabilityInference(
|
| 34 |
key=st.secrets["STABILITY_KEY"], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference.
|
| 35 |
verbose=True, # Print debug messages.
|
|
|
|
| 217 |
).execute()
|
| 218 |
|
| 219 |
openai.api_key = st.secrets["OPENAI_KEY"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
def openai_response(PROMPT):
|
| 222 |
response = openai.Image.create(
|
|
|
|
| 229 |
st.title("Hi! :red[HyperBot] here!!🤖⭐️")
|
| 230 |
st.title("Go on ask me anything!!")
|
| 231 |
|
| 232 |
+
st.write('''
|
| 233 |
+
⭐️ HyperBot is your virtual assistant powered by Whisper /
|
| 234 |
+
chatgpt / internet / Dall-E / OpenAI embeddings - the perfect
|
| 235 |
+
companion for you. With HyperBot, you can ask anything you ask
|
| 236 |
+
internet everyday . Get answers to questions about the weather,
|
| 237 |
+
stocks 📈, news📰, and more! Plus, you can also generate 🖌️
|
| 238 |
+
paintings, drawings, abstract art 🎨, play music 🎵 or videos,
|
| 239 |
+
create tweets 🐦 and posts 📝, and compose emails 📧 - all with
|
| 240 |
+
the help of HyperBot! 🤖 ✨
|
| 241 |
''')
|
| 242 |
|
| 243 |
+
st.text('''You can ask me:
|
| 244 |
+
1. All the things you ask ChatGPT.
|
| 245 |
+
2. Generating paintings, drawings, abstract art.
|
| 246 |
+
3. Music or Videos
|
| 247 |
+
4. Weather
|
| 248 |
+
5. Stocks
|
| 249 |
+
6. Current Affairs and News.
|
| 250 |
+
7. Create or compose tweets or Linkedin posts or email.''')
|
| 251 |
+
|
| 252 |
+
Input_type = st.radio(
|
| 253 |
+
"**Input type:**",
|
| 254 |
+
('TEXT', 'SPEECH')
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
if Input_type == 'TEXT':
|
| 258 |
+
st.write('**You are now in Text input mode**')
|
| 259 |
+
mytext = st.text_input('**Go on! Ask me anything:**')
|
| 260 |
+
if st.button("SUBMIT"):
|
| 261 |
+
question=mytext
|
| 262 |
+
response = openai.Completion.create(
|
| 263 |
+
model="text-davinci-003",
|
| 264 |
+
prompt=f'''Your name is HyperBot and knowledge cutoff date is 2021-09, and you are not aware of any events after that time. if the
|
| 265 |
+
Answer to following questions is not from your knowledge base or in case of queries like weather
|
| 266 |
+
updates / stock updates / current news or people which requires you to have internet connection then print i don't have access to internet to answer your question,
|
| 267 |
+
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
| 268 |
+
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
| 269 |
+
if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") .
|
| 270 |
+
if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)")
|
| 271 |
+
\nQuestion-{question}
|
| 272 |
+
\nAnswer -''',
|
| 273 |
+
temperature=0.49,
|
| 274 |
+
max_tokens=256,
|
| 275 |
+
top_p=1,
|
| 276 |
+
frequency_penalty=0,
|
| 277 |
+
presence_penalty=0
|
| 278 |
+
)
|
| 279 |
+
string_temp=response.choices[0].text
|
| 280 |
|
| 281 |
+
if ("gen_draw" in string_temp):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
try:
|
| 284 |
+
wget.download(openai_response(prompt))
|
| 285 |
+
img2 = Image.open(wget.download(openai_response(prompt)))
|
| 286 |
+
img2.show()
|
| 287 |
+
rx = 'Image returned'
|
| 288 |
+
g_sheet_log(mytext, rx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
except:
|
| 290 |
+
urllib.request.urlretrieve(openai_response(prompt),"img_ret.png")
|
| 291 |
+
img = Image.open("img_ret.png")
|
| 292 |
+
img.show()
|
| 293 |
+
rx = 'Image returned'
|
| 294 |
+
g_sheet_log(mytext, rx)
|
| 295 |
+
except:
|
| 296 |
+
# Set up our initial generation parameters.
|
| 297 |
+
answers = stability_api.generate(
|
| 298 |
+
prompt = mytext,
|
| 299 |
+
seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
|
| 300 |
+
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
|
| 301 |
+
# Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
|
| 302 |
+
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
|
| 303 |
+
cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
|
| 304 |
+
# Setting this value higher increases the strength in which it tries to match your prompt.
|
| 305 |
+
# Defaults to 7.0 if not specified.
|
| 306 |
+
width=512, # Generation width, defaults to 512 if not included.
|
| 307 |
+
height=512, # Generation height, defaults to 512 if not included.
|
| 308 |
+
samples=1, # Number of images to generate, defaults to 1 if not included.
|
| 309 |
+
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
|
| 310 |
+
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
|
| 311 |
+
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
|
| 312 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
# Set up our warning to print to the console if the adult content classifier is tripped.
|
| 315 |
+
# If adult content classifier is not tripped, save generated images.
|
| 316 |
+
for resp in answers:
|
| 317 |
+
for artifact in resp.artifacts:
|
| 318 |
+
if artifact.finish_reason == generation.FILTER:
|
| 319 |
+
warnings.warn(
|
| 320 |
+
"Your request activated the API's safety filters and could not be processed."
|
| 321 |
+
"Please modify the prompt and try again.")
|
| 322 |
+
if artifact.type == generation.ARTIFACT_IMAGE:
|
| 323 |
+
img = Image.open(io.BytesIO(artifact.binary))
|
| 324 |
+
st.image(img)
|
| 325 |
+
img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
|
| 326 |
+
rx = 'Image returned'
|
| 327 |
+
g_sheet_log(mytext, rx)
|
| 328 |
+
|
| 329 |
+
# except:
|
| 330 |
+
# st.write('image is being generated please wait...')
|
| 331 |
+
# def extract_image_description(input_string):
|
| 332 |
+
# return input_string.split('gen_draw("')[1].split('")')[0]
|
| 333 |
+
# prompt=extract_image_description(string_temp)
|
| 334 |
+
# # model_id = "CompVis/stable-diffusion-v1-4"
|
| 335 |
+
# model_id='runwayml/stable-diffusion-v1-5'
|
| 336 |
+
# device = "cuda"
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 340 |
+
# pipe = pipe.to(device)
|
| 341 |
+
|
| 342 |
+
# # prompt = "a photo of an astronaut riding a horse on mars"
|
| 343 |
+
# image = pipe(prompt).images[0]
|
| 344 |
+
|
| 345 |
+
# image.save("astronaut_rides_horse.png")
|
| 346 |
+
# st.image(image)
|
| 347 |
+
# # image
|
| 348 |
+
|
| 349 |
+
elif ("vid_tube" in string_temp):
|
| 350 |
+
s = Search(mytext)
|
| 351 |
+
search_res = s.results
|
| 352 |
+
first_vid = search_res[0]
|
| 353 |
+
print(first_vid)
|
| 354 |
+
string = str(first_vid)
|
| 355 |
+
video_id = string[string.index('=') + 1:-1]
|
| 356 |
+
# print(video_id)
|
| 357 |
+
YoutubeURL = "https://www.youtube.com/watch?v="
|
| 358 |
+
OurURL = YoutubeURL + video_id
|
| 359 |
+
st.write(OurURL)
|
| 360 |
+
st_player(OurURL)
|
| 361 |
+
ry = 'Youtube link and video returned'
|
| 362 |
+
g_sheet_log(mytext, ry)
|
| 363 |
+
|
| 364 |
+
elif ("don't" in string_temp or "internet" in string_temp):
|
| 365 |
+
st.write('searching internet ')
|
| 366 |
+
search_internet(question)
|
| 367 |
+
rz = 'Internet result returned'
|
| 368 |
+
g_sheet_log(mytext, string_temp)
|
| 369 |
+
|
| 370 |
+
else:
|
| 371 |
+
st.write(string_temp)
|
| 372 |
+
g_sheet_log(mytext, string_temp)
|
| 373 |
+
|
| 374 |
+
elif Input_type == 'SPEECH':
|
| 375 |
+
option_speech = st.selectbox(
|
| 376 |
+
'Choose from below: (Options for Transcription)',
|
| 377 |
+
('Use Microphone', 'OpenAI Whisper (Upload audio file)')
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if option_speech == 'Use Microphone':
|
| 381 |
+
stt_button = Button(label="Speak", width=100)
|
| 382 |
+
stt_button.js_on_event("button_click", CustomJS(code="""
|
| 383 |
+
var recognition = new webkitSpeechRecognition();
|
| 384 |
+
recognition.continuous = true;
|
| 385 |
+
recognition.interimResults = true;
|
| 386 |
+
|
| 387 |
+
recognition.onresult = function (e) {
|
| 388 |
+
var value = "";
|
| 389 |
+
for (var i = e.resultIndex; i < e.results.length; ++i) {
|
| 390 |
+
if (e.results[i].isFinal) {
|
| 391 |
+
value += e.results[i][0].transcript;
|
| 392 |
}
|
| 393 |
}
|
| 394 |
+
if ( value != "") {
|
| 395 |
+
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
|
| 396 |
+
}
|
| 397 |
+
}
|
| 398 |
+
recognition.start();
|
| 399 |
+
"""))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
+
result = streamlit_bokeh_events(
|
| 402 |
+
stt_button,
|
| 403 |
+
events="GET_TEXT",
|
| 404 |
+
key="listen",
|
| 405 |
+
refresh_on_update=False,
|
| 406 |
+
override_height=75,
|
| 407 |
+
debounce_time=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
|
| 409 |
+
if result:
|
| 410 |
+
if "GET_TEXT" in result:
|
| 411 |
+
question = result.get("GET_TEXT")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
response = openai.Completion.create(
|
| 413 |
model="text-davinci-003",
|
| 414 |
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
|
|
|
| 424 |
frequency_penalty=0,
|
| 425 |
presence_penalty=0
|
| 426 |
)
|
|
|
|
| 427 |
string_temp=response.choices[0].text
|
| 428 |
|
| 429 |
if ("gen_draw" in string_temp):
|
|
|
|
| 463 |
search_internet(question)
|
| 464 |
else:
|
| 465 |
st.write(string_temp)
|
| 466 |
+
|
| 467 |
+
elif option_speech == 'OpenAI Whisper (Upload audio file)':
|
| 468 |
+
audio_file = st.file_uploader("Upload Audio file",type=['wav', 'mp3'])
|
| 469 |
+
if audio_file is not None:
|
| 470 |
+
# file = open(audio_file, "rb")
|
| 471 |
+
st.audio(audio_file)
|
| 472 |
+
transcription = openai.Audio.transcribe("whisper-1", audio_file)
|
| 473 |
+
st.write(transcription["text"])
|
| 474 |
+
result = transcription["text"]
|
| 475 |
+
question = result
|
| 476 |
+
response = openai.Completion.create(
|
| 477 |
+
model="text-davinci-003",
|
| 478 |
+
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
| 479 |
+
Answer to following questions is not from your knowledge base or in case of queries like weather
|
| 480 |
+
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
| 481 |
+
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
| 482 |
+
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
| 483 |
+
\nQuestion-{question}
|
| 484 |
+
\nAnswer -''',
|
| 485 |
+
temperature=0.49,
|
| 486 |
+
max_tokens=256,
|
| 487 |
+
top_p=1,
|
| 488 |
+
frequency_penalty=0,
|
| 489 |
+
presence_penalty=0
|
| 490 |
+
)
|
| 491 |
|
| 492 |
+
string_temp=response.choices[0].text
|
| 493 |
+
|
| 494 |
+
if ("gen_draw" in string_temp):
|
| 495 |
+
st.write('*image is being generated please wait..* ')
|
| 496 |
+
def extract_image_description(input_string):
|
| 497 |
+
return input_string.split('gen_draw("')[1].split('")')[0]
|
| 498 |
+
prompt=extract_image_description(string_temp)
|
| 499 |
+
# model_id = "CompVis/stable-diffusion-v1-4"
|
| 500 |
+
model_id='runwayml/stable-diffusion-v1-5'
|
| 501 |
+
device = "cuda"
|
| 502 |
+
|
| 503 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 504 |
+
pipe = pipe.to(device)
|
| 505 |
+
|
| 506 |
+
# prompt = "a photo of an astronaut riding a horse on mars"
|
| 507 |
+
image = pipe(prompt).images[0]
|
| 508 |
+
|
| 509 |
+
image.save("astronaut_rides_horse.png")
|
| 510 |
+
st.image(image)
|
| 511 |
+
# image
|
| 512 |
|
| 513 |
+
elif ("vid_tube" in string_temp):
|
| 514 |
+
s = Search(question)
|
| 515 |
+
search_res = s.results
|
| 516 |
+
first_vid = search_res[0]
|
| 517 |
+
print(first_vid)
|
| 518 |
+
string = str(first_vid)
|
| 519 |
+
video_id = string[string.index('=') + 1:-1]
|
| 520 |
+
# print(video_id)
|
| 521 |
+
YoutubeURL = "https://www.youtube.com/watch?v="
|
| 522 |
+
OurURL = YoutubeURL + video_id
|
| 523 |
+
st.write(OurURL)
|
| 524 |
+
st_player(OurURL)
|
| 525 |
+
|
| 526 |
+
elif ("don't" in string_temp or "internet" in string_temp ):
|
| 527 |
+
st.write('*searching internet*')
|
| 528 |
+
search_internet(question)
|
| 529 |
+
else:
|
| 530 |
+
st.write(string_temp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
else:
|
| 532 |
pass
|