Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -172,291 +172,380 @@ def openai_response(PROMPT):
|
|
172 |
#}
|
173 |
#</style>
|
174 |
#"""
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
if
|
186 |
-
st.
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
- How many cars were manufactured each year between 2000 to 2008?
|
192 |
-
''')
|
193 |
|
194 |
-
option = ['Sample_Cars_csv','Upload_csv']
|
195 |
-
res = st.selectbox('Select from below options:',option)
|
196 |
-
if res == 'Upload_csv':
|
197 |
-
uploaded_file = st.file_uploader("Add dataset (csv) ",type=['csv'])
|
198 |
-
if uploaded_file is not None:
|
199 |
-
st.write("File Uploaded")
|
200 |
-
file_name=uploaded_file.name
|
201 |
-
ext=file_name.split(".")[0]
|
202 |
-
st.write(ext)
|
203 |
-
df=pd.read_csv(uploaded_file)
|
204 |
-
save_uploadedfile(uploaded_file)
|
205 |
-
col= df.columns
|
206 |
-
try:
|
207 |
-
columns = str((df.columns).tolist())
|
208 |
-
column = clean(columns)
|
209 |
-
st.write('Columns:' )
|
210 |
-
st.text(col)
|
211 |
-
except:
|
212 |
-
pass
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
221 |
-
submitButton = st.form_submit_button(label = 'Submit')
|
222 |
-
if submitButton:
|
223 |
-
try:
|
224 |
-
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
225 |
-
result = gpt3(col_p)
|
226 |
-
except:
|
227 |
-
results = gpt3(userPrompt)
|
228 |
-
st.success('loaded')
|
229 |
-
with col4:
|
230 |
try:
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
if
|
244 |
-
|
245 |
-
|
246 |
|
247 |
-
elif len(result_tab2.columns) < 2:
|
248 |
-
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
249 |
-
|
250 |
else:
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
print('Retry! Graph could not be plotted *_*')
|
267 |
-
|
268 |
-
except:
|
269 |
-
pass
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
try:
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
except:
|
280 |
pass
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
try:
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
-
|
316 |
-
|
|
|
317 |
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
else:
|
334 |
-
print('Retry! Graph could not be plotted *_*')
|
335 |
|
336 |
-
|
337 |
-
|
338 |
-
|
|
|
|
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
2. Generating paintings, drawings, abstract art.
|
344 |
-
3. Music or Videos
|
345 |
-
4. Weather
|
346 |
-
5. Stocks
|
347 |
-
6. Current Affairs and News.
|
348 |
-
7. Create or compose tweets or Linkedin posts or email.''')
|
349 |
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
st.write('**You are now in Text input mode**')
|
368 |
-
mytext = st.text_input('**Go on! Ask me anything:**')
|
369 |
-
if st.button("SUBMIT"):
|
370 |
-
question=mytext
|
371 |
response = openai.Completion.create(
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
frequency_penalty=0,
|
386 |
-
presence_penalty=0
|
387 |
)
|
388 |
string_temp=response.choices[0].text
|
389 |
-
|
390 |
if ("gen_draw" in string_temp):
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
|
410 |
-
# Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
|
411 |
-
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
|
412 |
-
cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
|
413 |
-
# Setting this value higher increases the strength in which it tries to match your prompt.
|
414 |
-
# Defaults to 7.0 if not specified.
|
415 |
-
width=512, # Generation width, defaults to 512 if not included.
|
416 |
-
height=512, # Generation height, defaults to 512 if not included.
|
417 |
-
samples=1, # Number of images to generate, defaults to 1 if not included.
|
418 |
-
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
|
419 |
-
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
|
420 |
-
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
|
421 |
-
)
|
422 |
-
|
423 |
-
# Set up our warning to print to the console if the adult content classifier is tripped.
|
424 |
-
# If adult content classifier is not tripped, save generated images.
|
425 |
-
for resp in answers:
|
426 |
-
for artifact in resp.artifacts:
|
427 |
-
if artifact.finish_reason == generation.FILTER:
|
428 |
-
warnings.warn(
|
429 |
-
"Your request activated the API's safety filters and could not be processed."
|
430 |
-
"Please modify the prompt and try again.")
|
431 |
-
if artifact.type == generation.ARTIFACT_IMAGE:
|
432 |
-
img = Image.open(io.BytesIO(artifact.binary))
|
433 |
-
st.image(img)
|
434 |
-
img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
|
435 |
-
rx = 'Image returned'
|
436 |
-
g_sheet_log(mytext, rx)
|
437 |
-
|
438 |
-
# except:
|
439 |
-
# st.write('image is being generated please wait...')
|
440 |
-
# def extract_image_description(input_string):
|
441 |
-
# return input_string.split('gen_draw("')[1].split('")')[0]
|
442 |
-
# prompt=extract_image_description(string_temp)
|
443 |
-
# # model_id = "CompVis/stable-diffusion-v1-4"
|
444 |
-
# model_id='runwayml/stable-diffusion-v1-5'
|
445 |
-
# device = "cuda"
|
446 |
-
|
447 |
-
|
448 |
-
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
449 |
-
# pipe = pipe.to(device)
|
450 |
-
|
451 |
-
# # prompt = "a photo of an astronaut riding a horse on mars"
|
452 |
-
# image = pipe(prompt).images[0]
|
453 |
-
|
454 |
-
# image.save("astronaut_rides_horse.png")
|
455 |
-
# st.image(image)
|
456 |
-
# # image
|
457 |
-
|
458 |
elif ("vid_tube" in string_temp):
|
459 |
-
s = Search(
|
460 |
search_res = s.results
|
461 |
first_vid = search_res[0]
|
462 |
print(first_vid)
|
@@ -467,102 +556,9 @@ with col2:
|
|
467 |
OurURL = YoutubeURL + video_id
|
468 |
st.write(OurURL)
|
469 |
st_player(OurURL)
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
elif ("don't" in string_temp or "internet" in string_temp):
|
474 |
-
st.write('searching internet ')
|
475 |
search_internet(question)
|
476 |
-
rz = 'Internet result returned'
|
477 |
-
g_sheet_log(mytext, rz)
|
478 |
-
|
479 |
else:
|
480 |
st.write(string_temp)
|
481 |
-
g_sheet_log(mytext, string_temp)
|
482 |
-
|
483 |
-
elif Input_type == 'SPEECH':
|
484 |
-
stt_button = Button(label="Speak", width=100)
|
485 |
-
stt_button.js_on_event("button_click", CustomJS(code="""
|
486 |
-
var recognition = new webkitSpeechRecognition();
|
487 |
-
recognition.continuous = true;
|
488 |
-
recognition.interimResults = true;
|
489 |
-
recognition.onresult = function (e) {
|
490 |
-
var value = "";
|
491 |
-
for (var i = e.resultIndex; i < e.results.length; ++i) {
|
492 |
-
if (e.results[i].isFinal) {
|
493 |
-
value += e.results[i][0].transcript;
|
494 |
-
}
|
495 |
-
}
|
496 |
-
if ( value != "") {
|
497 |
-
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
|
498 |
-
}
|
499 |
-
}
|
500 |
-
recognition.start();
|
501 |
-
"""))
|
502 |
-
|
503 |
-
result = streamlit_bokeh_events(
|
504 |
-
stt_button,
|
505 |
-
events="GET_TEXT",
|
506 |
-
key="listen",
|
507 |
-
refresh_on_update=False,
|
508 |
-
override_height=75,
|
509 |
-
debounce_time=0)
|
510 |
-
|
511 |
-
if result:
|
512 |
-
if "GET_TEXT" in result:
|
513 |
-
st.write(result.get("GET_TEXT"))
|
514 |
-
question = result.get("GET_TEXT")
|
515 |
-
response = openai.Completion.create(
|
516 |
-
model="text-davinci-003",
|
517 |
-
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
518 |
-
Answer to following questions is not from your knowledge base or in case of queries like weather
|
519 |
-
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
520 |
-
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
521 |
-
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
522 |
-
\nQuestion-{question}
|
523 |
-
\nAnswer -''',
|
524 |
-
temperature=0.49,
|
525 |
-
max_tokens=256,
|
526 |
-
top_p=1,
|
527 |
-
frequency_penalty=0,
|
528 |
-
presence_penalty=0
|
529 |
-
)
|
530 |
-
string_temp=response.choices[0].text
|
531 |
-
|
532 |
-
if ("gen_draw" in string_temp):
|
533 |
-
st.write('*image is being generated please wait..* ')
|
534 |
-
def extract_image_description(input_string):
|
535 |
-
return input_string.split('gen_draw("')[1].split('")')[0]
|
536 |
-
prompt=extract_image_description(string_temp)
|
537 |
-
# model_id = "CompVis/stable-diffusion-v1-4"
|
538 |
-
model_id='runwayml/stable-diffusion-v1-5'
|
539 |
-
device = "cuda"
|
540 |
-
|
541 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
542 |
-
pipe = pipe.to(device)
|
543 |
-
|
544 |
-
# prompt = "a photo of an astronaut riding a horse on mars"
|
545 |
-
image = pipe(prompt).images[0]
|
546 |
-
|
547 |
-
image.save("astronaut_rides_horse.png")
|
548 |
-
st.image(image)
|
549 |
-
# image
|
550 |
-
|
551 |
-
elif ("vid_tube" in string_temp):
|
552 |
-
s = Search(question)
|
553 |
-
search_res = s.results
|
554 |
-
first_vid = search_res[0]
|
555 |
-
print(first_vid)
|
556 |
-
string = str(first_vid)
|
557 |
-
video_id = string[string.index('=') + 1:-1]
|
558 |
-
# print(video_id)
|
559 |
-
YoutubeURL = "https://www.youtube.com/watch?v="
|
560 |
-
OurURL = YoutubeURL + video_id
|
561 |
-
st.write(OurURL)
|
562 |
-
st_player(OurURL)
|
563 |
-
|
564 |
-
elif ("don't" in string_temp or "internet" in string_temp ):
|
565 |
-
st.write('*searching internet*')
|
566 |
-
search_internet(question)
|
567 |
-
else:
|
568 |
-
st.write(string_temp)
|
|
|
172 |
#}
|
173 |
#</style>
|
174 |
#"""
|
175 |
+
#st.markdown(page_bg_img, unsafe_allow_html=True)
|
176 |
+
st.title("Ask :red[Mukesh] anything!!🤖")
|
177 |
+
st.title("Puchne mai kya jaata hai??")
|
178 |
+
|
179 |
+
option_ = ['Random Questions','Questions based on custom CSV data']
|
180 |
+
Usage = st.selectbox('Select an option:', option_)
|
181 |
+
if Usage == 'Questions based on custom CSV data':
|
182 |
+
st.text('''
|
183 |
+
You can use your own custom csv files to test this feature or
|
184 |
+
you can use the sample csv file which contains data about cars.
|
185 |
+
|
186 |
+
Example question:
|
187 |
+
- How many cars were manufactured each year between 2000 to 2008?
|
188 |
+
''')
|
189 |
|
190 |
+
option = ['Sample_Cars_csv','Upload_csv']
|
191 |
+
res = st.selectbox('Select from below options:',option)
|
192 |
+
if res == 'Upload_csv':
|
193 |
+
uploaded_file = st.file_uploader("Add dataset (csv) ",type=['csv'])
|
194 |
+
if uploaded_file is not None:
|
195 |
+
st.write("File Uploaded")
|
196 |
+
file_name=uploaded_file.name
|
197 |
+
ext=file_name.split(".")[0]
|
198 |
+
st.write(ext)
|
199 |
+
df=pd.read_csv(uploaded_file)
|
200 |
+
save_uploadedfile(uploaded_file)
|
201 |
+
col= df.columns
|
202 |
+
try:
|
203 |
+
columns = str((df.columns).tolist())
|
204 |
+
column = clean(columns)
|
205 |
+
st.write('Columns:' )
|
206 |
+
st.text(col)
|
207 |
+
except:
|
208 |
+
pass
|
209 |
|
210 |
+
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
|
|
|
|
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
with st.form(key='columns_in_form2'):
|
214 |
+
col3, col4 = st.columns(2)
|
215 |
+
with col3:
|
216 |
+
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
217 |
+
submitButton = st.form_submit_button(label = 'Submit')
|
218 |
+
if submitButton:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
try:
|
220 |
+
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
221 |
+
result = gpt3(col_p)
|
222 |
+
except:
|
223 |
+
results = gpt3(userPrompt)
|
224 |
+
st.success('loaded')
|
225 |
+
with col4:
|
226 |
+
try:
|
227 |
+
sqlOutput = st.text_area('SQL Query', value=gpt3(col_p))
|
228 |
+
warning(sqlOutput)
|
229 |
+
cars=pd.read_csv('cars.csv')
|
230 |
+
result_tab2=ps.sqldf(sqlOutput)
|
231 |
+
st.write(result_tab2)
|
232 |
+
with open("fewshot_matplot.txt", "r") as file:
|
233 |
+
text_plot = file.read()
|
234 |
+
|
235 |
+
result_tab = result_tab2.reset_index(drop=True)
|
236 |
+
result_tab_string = result_tab.to_string()
|
237 |
+
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
238 |
+
|
239 |
+
if len(gr_prompt) > 4097:
|
240 |
+
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
241 |
+
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
242 |
+
|
243 |
+
elif len(result_tab2.columns) < 2:
|
244 |
+
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
245 |
+
|
246 |
+
else:
|
247 |
+
st.success("Plotting...")
|
248 |
+
response_graph = openai.Completion.create(
|
249 |
+
engine="text-davinci-003",
|
250 |
+
prompt = gr_prompt,
|
251 |
+
max_tokens=1024,
|
252 |
+
n=1,
|
253 |
+
stop=None,
|
254 |
+
temperature=0.5,
|
255 |
+
)
|
256 |
|
257 |
+
if response_graph['choices'][0]['text'] != "":
|
258 |
+
print(response_graph['choices'][0]['text'])
|
259 |
+
exec(response_graph['choices'][0]['text'])
|
260 |
|
|
|
|
|
|
|
261 |
else:
|
262 |
+
print('Retry! Graph could not be plotted *_*')
|
263 |
+
|
264 |
+
except:
|
265 |
+
pass
|
266 |
+
|
267 |
+
elif res == "Sample_Cars_csv":
|
268 |
+
df = pd.read_csv('cars.csv')
|
269 |
+
col= df.columns
|
270 |
+
try:
|
271 |
+
columns = str((df.columns).tolist())
|
272 |
+
column = clean(columns)
|
273 |
+
st.write('Columns:' )
|
274 |
+
st.text(col)
|
275 |
+
except:
|
276 |
+
pass
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
temp = st.slider('Temperature: ', 0.0, 1.0, 0.0)
|
279 |
+
|
280 |
+
|
281 |
+
with st.form(key='columns_in_form2'):
|
282 |
+
col3, col4 = st.columns(2)
|
283 |
+
with col3:
|
284 |
+
userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query')
|
285 |
+
submitButton = st.form_submit_button(label = 'Submit')
|
286 |
+
if submitButton:
|
287 |
+
try:
|
288 |
+
col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:"
|
289 |
+
result = gpt3(col_p)
|
290 |
+
except:
|
291 |
+
results = gpt3(userPrompt)
|
292 |
+
st.success('loaded')
|
293 |
+
with col4:
|
294 |
try:
|
295 |
+
sqlOutput = st.text_area('SQL Query', value=gpt3(col_p))
|
296 |
+
warning(sqlOutput)
|
297 |
+
cars=pd.read_csv('cars.csv')
|
298 |
+
result_tab2=ps.sqldf(sqlOutput)
|
299 |
+
st.write(result_tab2)
|
300 |
+
with open("fewshot_matplot.txt", "r") as file:
|
301 |
+
text_plot = file.read()
|
302 |
+
|
303 |
+
result_tab = result_tab2.reset_index(drop=True)
|
304 |
+
result_tab_string = result_tab.to_string()
|
305 |
+
gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: "
|
306 |
+
|
307 |
+
if len(gr_prompt) > 4097:
|
308 |
+
st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^')
|
309 |
+
st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^')
|
310 |
+
|
311 |
+
elif len(result_tab2.columns) < 2:
|
312 |
+
st.write("I need more data to conduct analysis and provide visualizations for you... ^_^")
|
313 |
+
|
314 |
+
else:
|
315 |
+
st.success("Plotting...")
|
316 |
+
response_graph = openai.Completion.create(
|
317 |
+
engine="text-davinci-003",
|
318 |
+
prompt = gr_prompt,
|
319 |
+
max_tokens=1024,
|
320 |
+
n=1,
|
321 |
+
stop=None,
|
322 |
+
temperature=0.5,
|
323 |
+
)
|
324 |
+
|
325 |
+
if response_graph['choices'][0]['text'] != "":
|
326 |
+
print(response_graph['choices'][0]['text'])
|
327 |
+
exec(response_graph['choices'][0]['text'])
|
328 |
+
|
329 |
+
else:
|
330 |
+
print('Retry! Graph could not be plotted *_*')
|
331 |
+
|
332 |
except:
|
333 |
pass
|
334 |
|
335 |
+
|
336 |
+
elif Usage == 'Random Questions':
|
337 |
+
st.text('''You can ask me:
|
338 |
+
1. All the things you ask ChatGPT.
|
339 |
+
2. Generating paintings, drawings, abstract art.
|
340 |
+
3. Music or Videos
|
341 |
+
4. Weather
|
342 |
+
5. Stocks
|
343 |
+
6. Current Affairs and News.
|
344 |
+
7. Create or compose tweets or Linkedin posts or email.''')
|
345 |
+
|
346 |
+
Input_type = st.radio(
|
347 |
+
"**Input type:**",
|
348 |
+
('TEXT', 'SPEECH')
|
349 |
+
)
|
350 |
+
|
351 |
+
if Input_type == 'TEXT':
|
352 |
+
#page_bg_img2 = """
|
353 |
+
#<style>
|
354 |
+
#[data-testid="stAppViewContainer"] {
|
355 |
+
#background-color: #e5e5f7;
|
356 |
+
#opacity: 0.8;
|
357 |
+
#background-size: 20px 20px;
|
358 |
+
#background-image: repeating-linear-gradient(0deg, #32d947, #32d947 1px, #e5e5f7 1px, #e5e5f7);
|
359 |
+
#}
|
360 |
+
#</style>
|
361 |
+
#"""
|
362 |
+
#st.markdown(page_bg_img, unsafe_allow_html=True)
|
363 |
+
st.write('**You are now in Text input mode**')
|
364 |
+
mytext = st.text_input('**Go on! Ask me anything:**')
|
365 |
+
if st.button("SUBMIT"):
|
366 |
+
question=mytext
|
367 |
+
response = openai.Completion.create(
|
368 |
+
model="text-davinci-003",
|
369 |
+
prompt=f'''Your name is alexa and knowledge cutoff date is 2021-09, and it is not aware of any events after that time. if the
|
370 |
+
Answer to following questions is not from your knowledge base or in case of queries like weather
|
371 |
+
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
372 |
+
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
373 |
+
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
374 |
+
if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") .
|
375 |
+
if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)")
|
376 |
+
\nQuestion-{question}
|
377 |
+
\nAnswer -''',
|
378 |
+
temperature=0.49,
|
379 |
+
max_tokens=256,
|
380 |
+
top_p=1,
|
381 |
+
frequency_penalty=0,
|
382 |
+
presence_penalty=0
|
383 |
+
)
|
384 |
+
string_temp=response.choices[0].text
|
385 |
+
|
386 |
+
if ("gen_draw" in string_temp):
|
387 |
try:
|
388 |
+
try:
|
389 |
+
wget.download(openai_response(prompt))
|
390 |
+
img2 = Image.open(wget.download(openai_response(prompt)))
|
391 |
+
img2.show()
|
392 |
+
rx = 'Image returned'
|
393 |
+
g_sheet_log(mytext, rx)
|
394 |
+
except:
|
395 |
+
urllib.request.urlretrieve(openai_response(prompt),"img_ret.png")
|
396 |
+
img = Image.open("img_ret.png")
|
397 |
+
img.show()
|
398 |
+
rx = 'Image returned'
|
399 |
+
g_sheet_log(mytext, rx)
|
400 |
+
except:
|
401 |
+
# Set up our initial generation parameters.
|
402 |
+
answers = stability_api.generate(
|
403 |
+
prompt = mytext,
|
404 |
+
seed=992446758, # If a seed is provided, the resulting generated image will be deterministic.
|
405 |
+
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
|
406 |
+
# Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
|
407 |
+
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
|
408 |
+
cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
|
409 |
+
# Setting this value higher increases the strength in which it tries to match your prompt.
|
410 |
+
# Defaults to 7.0 if not specified.
|
411 |
+
width=512, # Generation width, defaults to 512 if not included.
|
412 |
+
height=512, # Generation height, defaults to 512 if not included.
|
413 |
+
samples=1, # Number of images to generate, defaults to 1 if not included.
|
414 |
+
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
|
415 |
+
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
|
416 |
+
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m)
|
417 |
+
)
|
418 |
|
419 |
+
# Set up our warning to print to the console if the adult content classifier is tripped.
|
420 |
+
# If adult content classifier is not tripped, save generated images.
|
421 |
+
for resp in answers:
|
422 |
+
for artifact in resp.artifacts:
|
423 |
+
if artifact.finish_reason == generation.FILTER:
|
424 |
+
warnings.warn(
|
425 |
+
"Your request activated the API's safety filters and could not be processed."
|
426 |
+
"Please modify the prompt and try again.")
|
427 |
+
if artifact.type == generation.ARTIFACT_IMAGE:
|
428 |
+
img = Image.open(io.BytesIO(artifact.binary))
|
429 |
+
st.image(img)
|
430 |
+
img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename.
|
431 |
+
rx = 'Image returned'
|
432 |
+
g_sheet_log(mytext, rx)
|
433 |
+
|
434 |
+
# except:
|
435 |
+
# st.write('image is being generated please wait...')
|
436 |
+
# def extract_image_description(input_string):
|
437 |
+
# return input_string.split('gen_draw("')[1].split('")')[0]
|
438 |
+
# prompt=extract_image_description(string_temp)
|
439 |
+
# # model_id = "CompVis/stable-diffusion-v1-4"
|
440 |
+
# model_id='runwayml/stable-diffusion-v1-5'
|
441 |
+
# device = "cuda"
|
442 |
+
|
443 |
+
|
444 |
+
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
445 |
+
# pipe = pipe.to(device)
|
446 |
+
|
447 |
+
# # prompt = "a photo of an astronaut riding a horse on mars"
|
448 |
+
# image = pipe(prompt).images[0]
|
449 |
|
450 |
+
# image.save("astronaut_rides_horse.png")
|
451 |
+
# st.image(image)
|
452 |
+
# # image
|
453 |
|
454 |
+
elif ("vid_tube" in string_temp):
|
455 |
+
s = Search(mytext)
|
456 |
+
search_res = s.results
|
457 |
+
first_vid = search_res[0]
|
458 |
+
print(first_vid)
|
459 |
+
string = str(first_vid)
|
460 |
+
video_id = string[string.index('=') + 1:-1]
|
461 |
+
# print(video_id)
|
462 |
+
YoutubeURL = "https://www.youtube.com/watch?v="
|
463 |
+
OurURL = YoutubeURL + video_id
|
464 |
+
st.write(OurURL)
|
465 |
+
st_player(OurURL)
|
466 |
+
ry = 'Youtube link and video returned'
|
467 |
+
g_sheet_log(mytext, ry)
|
|
|
|
|
|
|
468 |
|
469 |
+
elif ("don't" in string_temp or "internet" in string_temp):
|
470 |
+
st.write('searching internet ')
|
471 |
+
search_internet(question)
|
472 |
+
rz = 'Internet result returned'
|
473 |
+
g_sheet_log(mytext, rz)
|
474 |
|
475 |
+
else:
|
476 |
+
st.write(string_temp)
|
477 |
+
g_sheet_log(mytext, string_temp)
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
|
479 |
+
elif Input_type == 'SPEECH':
|
480 |
+
stt_button = Button(label="Speak", width=100)
|
481 |
+
stt_button.js_on_event("button_click", CustomJS(code="""
|
482 |
+
var recognition = new webkitSpeechRecognition();
|
483 |
+
recognition.continuous = true;
|
484 |
+
recognition.interimResults = true;
|
485 |
+
recognition.onresult = function (e) {
|
486 |
+
var value = "";
|
487 |
+
for (var i = e.resultIndex; i < e.results.length; ++i) {
|
488 |
+
if (e.results[i].isFinal) {
|
489 |
+
value += e.results[i][0].transcript;
|
490 |
+
}
|
491 |
+
}
|
492 |
+
if ( value != "") {
|
493 |
+
document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value}));
|
494 |
+
}
|
495 |
+
}
|
496 |
+
recognition.start();
|
497 |
+
"""))
|
498 |
|
499 |
+
result = streamlit_bokeh_events(
|
500 |
+
stt_button,
|
501 |
+
events="GET_TEXT",
|
502 |
+
key="listen",
|
503 |
+
refresh_on_update=False,
|
504 |
+
override_height=75,
|
505 |
+
debounce_time=0)
|
506 |
+
|
507 |
+
if result:
|
508 |
+
if "GET_TEXT" in result:
|
509 |
+
st.write(result.get("GET_TEXT"))
|
510 |
+
question = result.get("GET_TEXT")
|
|
|
|
|
|
|
|
|
511 |
response = openai.Completion.create(
|
512 |
+
model="text-davinci-003",
|
513 |
+
prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the
|
514 |
+
Answer to following questions is not from your knowledge base or in case of queries like weather
|
515 |
+
updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question,
|
516 |
+
if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated")
|
517 |
+
if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query")
|
518 |
+
\nQuestion-{question}
|
519 |
+
\nAnswer -''',
|
520 |
+
temperature=0.49,
|
521 |
+
max_tokens=256,
|
522 |
+
top_p=1,
|
523 |
+
frequency_penalty=0,
|
524 |
+
presence_penalty=0
|
|
|
|
|
525 |
)
|
526 |
string_temp=response.choices[0].text
|
527 |
+
|
528 |
if ("gen_draw" in string_temp):
|
529 |
+
st.write('*image is being generated please wait..* ')
|
530 |
+
def extract_image_description(input_string):
|
531 |
+
return input_string.split('gen_draw("')[1].split('")')[0]
|
532 |
+
prompt=extract_image_description(string_temp)
|
533 |
+
# model_id = "CompVis/stable-diffusion-v1-4"
|
534 |
+
model_id='runwayml/stable-diffusion-v1-5'
|
535 |
+
device = "cuda"
|
536 |
+
|
537 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
538 |
+
pipe = pipe.to(device)
|
539 |
+
|
540 |
+
# prompt = "a photo of an astronaut riding a horse on mars"
|
541 |
+
image = pipe(prompt).images[0]
|
542 |
+
|
543 |
+
image.save("astronaut_rides_horse.png")
|
544 |
+
st.image(image)
|
545 |
+
# image
|
546 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
elif ("vid_tube" in string_temp):
|
548 |
+
s = Search(question)
|
549 |
search_res = s.results
|
550 |
first_vid = search_res[0]
|
551 |
print(first_vid)
|
|
|
556 |
OurURL = YoutubeURL + video_id
|
557 |
st.write(OurURL)
|
558 |
st_player(OurURL)
|
559 |
+
|
560 |
+
elif ("don't" in string_temp or "internet" in string_temp ):
|
561 |
+
st.write('*searching internet*')
|
|
|
|
|
562 |
search_internet(question)
|
|
|
|
|
|
|
563 |
else:
|
564 |
st.write(string_temp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|