Spaces:
Running
Running
Commit
·
1ca3adb
1
Parent(s):
cb4e009
fix stability
Browse files- app.py +113 -8
- packages.txt +1 -0
- requirements.txt +2 -1
- tts/frontend_function.py +20 -1
app.py
CHANGED
@@ -4,6 +4,11 @@ import os
|
|
4 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
5 |
import gradio as gr
|
6 |
import traceback
|
|
|
|
|
|
|
|
|
|
|
7 |
from huggingface_hub import snapshot_download
|
8 |
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav
|
9 |
|
@@ -33,6 +38,21 @@ print("Initializing MegaTTS3 model...")
|
|
33 |
infer_pipe = MegaTTS3DiTInfer()
|
34 |
print("Model loaded successfully!")
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
@spaces.GPU
|
37 |
def generate_speech(inp_audio, inp_text, infer_timestep, p_w, t_w):
|
38 |
if not inp_audio or not inp_text:
|
@@ -42,25 +62,110 @@ def generate_speech(inp_audio, inp_text, infer_timestep, p_w, t_w):
|
|
42 |
try:
|
43 |
print(f"Generating speech with: {inp_text}...")
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Read audio file
|
51 |
with open(wav_path, 'rb') as file:
|
52 |
file_content = file.read()
|
53 |
|
54 |
-
# Generate speech
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
return wav_bytes
|
59 |
except Exception as e:
|
60 |
traceback.print_exc()
|
61 |
gr.Warning(f"Speech generation failed: {str(e)}")
|
|
|
|
|
62 |
return None
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
with gr.Blocks(title="MegaTTS3 Voice Cloning") as demo:
|
66 |
gr.Markdown("# MegaTTS 3 Voice Cloning")
|
|
|
4 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
5 |
import gradio as gr
|
6 |
import traceback
|
7 |
+
import gc
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
from pydub import AudioSegment
|
11 |
+
from pydub.effects import normalize
|
12 |
from huggingface_hub import snapshot_download
|
13 |
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav
|
14 |
|
|
|
38 |
infer_pipe = MegaTTS3DiTInfer()
|
39 |
print("Model loaded successfully!")
|
40 |
|
41 |
+
def reset_model():
|
42 |
+
"""Reset the inference pipeline to recover from CUDA errors."""
|
43 |
+
global infer_pipe
|
44 |
+
try:
|
45 |
+
if torch.cuda.is_available():
|
46 |
+
torch.cuda.empty_cache()
|
47 |
+
torch.cuda.synchronize()
|
48 |
+
print("Reinitializing MegaTTS3 model...")
|
49 |
+
infer_pipe = MegaTTS3DiTInfer()
|
50 |
+
print("Model reinitialized successfully!")
|
51 |
+
return True
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Failed to reinitialize model: {e}")
|
54 |
+
return False
|
55 |
+
|
56 |
@spaces.GPU
|
57 |
def generate_speech(inp_audio, inp_text, infer_timestep, p_w, t_w):
|
58 |
if not inp_audio or not inp_text:
|
|
|
62 |
try:
|
63 |
print(f"Generating speech with: {inp_text}...")
|
64 |
|
65 |
+
# Check CUDA availability and clear cache
|
66 |
+
if torch.cuda.is_available():
|
67 |
+
torch.cuda.empty_cache()
|
68 |
+
print(f"CUDA device: {torch.cuda.get_device_name()}")
|
69 |
+
else:
|
70 |
+
gr.Warning("CUDA is not available. Please check your GPU setup.")
|
71 |
+
return None
|
72 |
+
|
73 |
+
# Robustly preprocess audio
|
74 |
+
try:
|
75 |
+
processed_audio_path = preprocess_audio_robust(inp_audio)
|
76 |
+
# Use existing cut_wav for final trimming
|
77 |
+
cut_wav(processed_audio_path, max_len=28)
|
78 |
+
wav_path = processed_audio_path
|
79 |
+
except Exception as audio_error:
|
80 |
+
gr.Warning(f"Audio preprocessing failed: {str(audio_error)}")
|
81 |
+
return None
|
82 |
|
83 |
# Read audio file
|
84 |
with open(wav_path, 'rb') as file:
|
85 |
file_content = file.read()
|
86 |
|
87 |
+
# Generate speech with proper error handling
|
88 |
+
try:
|
89 |
+
resource_context = infer_pipe.preprocess(file_content)
|
90 |
+
wav_bytes = infer_pipe.forward(resource_context, inp_text, time_step=infer_timestep, p_w=p_w, t_w=t_w)
|
91 |
+
# Clean up memory after successful generation
|
92 |
+
cleanup_memory()
|
93 |
+
return wav_bytes
|
94 |
+
except RuntimeError as cuda_error:
|
95 |
+
if "CUDA" in str(cuda_error):
|
96 |
+
print(f"CUDA error detected: {cuda_error}")
|
97 |
+
# Try to reset the model to recover from CUDA errors
|
98 |
+
if reset_model():
|
99 |
+
gr.Warning("CUDA error occurred. Model has been reset. Please try again.")
|
100 |
+
else:
|
101 |
+
gr.Warning("CUDA error occurred and model reset failed. Please restart the application.")
|
102 |
+
return None
|
103 |
+
else:
|
104 |
+
raise cuda_error
|
105 |
|
|
|
106 |
except Exception as e:
|
107 |
traceback.print_exc()
|
108 |
gr.Warning(f"Speech generation failed: {str(e)}")
|
109 |
+
# Clean up CUDA memory on any error
|
110 |
+
cleanup_memory()
|
111 |
return None
|
112 |
|
113 |
+
def cleanup_memory():
|
114 |
+
"""Clean up GPU and system memory."""
|
115 |
+
gc.collect()
|
116 |
+
if torch.cuda.is_available():
|
117 |
+
torch.cuda.empty_cache()
|
118 |
+
torch.cuda.synchronize()
|
119 |
+
|
120 |
+
def preprocess_audio_robust(audio_path, target_sr=22050, max_duration=30):
|
121 |
+
"""Robustly preprocess audio to prevent CUDA errors."""
|
122 |
+
try:
|
123 |
+
# Load with pydub for robust format handling
|
124 |
+
audio = AudioSegment.from_file(audio_path)
|
125 |
+
|
126 |
+
# Convert to mono if stereo
|
127 |
+
if audio.channels > 1:
|
128 |
+
audio = audio.set_channels(1)
|
129 |
+
|
130 |
+
# Limit duration to prevent memory issues
|
131 |
+
if len(audio) > max_duration * 1000: # pydub uses milliseconds
|
132 |
+
audio = audio[:max_duration * 1000]
|
133 |
+
|
134 |
+
# Normalize audio to prevent clipping
|
135 |
+
audio = normalize(audio)
|
136 |
+
|
137 |
+
# Convert to target sample rate
|
138 |
+
audio = audio.set_frame_rate(target_sr)
|
139 |
+
|
140 |
+
# Export to temporary WAV file with specific parameters
|
141 |
+
temp_path = audio_path.replace(os.path.splitext(audio_path)[1], '_processed.wav')
|
142 |
+
audio.export(
|
143 |
+
temp_path,
|
144 |
+
format="wav",
|
145 |
+
parameters=["-acodec", "pcm_s16le", "-ac", "1", "-ar", str(target_sr)]
|
146 |
+
)
|
147 |
+
|
148 |
+
# Validate the audio with librosa
|
149 |
+
wav, sr = librosa.load(temp_path, sr=target_sr, mono=True)
|
150 |
+
|
151 |
+
# Check for invalid values
|
152 |
+
if np.any(np.isnan(wav)) or np.any(np.isinf(wav)):
|
153 |
+
raise ValueError("Audio contains NaN or infinite values")
|
154 |
+
|
155 |
+
# Ensure reasonable amplitude range
|
156 |
+
if np.max(np.abs(wav)) < 1e-6:
|
157 |
+
raise ValueError("Audio signal is too quiet")
|
158 |
+
|
159 |
+
# Re-save the validated audio
|
160 |
+
import soundfile as sf
|
161 |
+
sf.write(temp_path, wav, sr)
|
162 |
+
|
163 |
+
return temp_path
|
164 |
+
|
165 |
+
except Exception as e:
|
166 |
+
print(f"Audio preprocessing failed: {e}")
|
167 |
+
raise ValueError(f"Failed to process audio: {str(e)}")
|
168 |
+
|
169 |
|
170 |
with gr.Blocks(title="MegaTTS3 Voice Cloning") as demo:
|
171 |
gr.Markdown("# MegaTTS 3 Voice Cloning")
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
CHANGED
@@ -16,4 +16,5 @@ torchdiffeq==0.2.5
|
|
16 |
openai-whisper==20240930
|
17 |
httpx==0.28.1
|
18 |
gradio==5.23.1
|
19 |
-
hf-transfer
|
|
|
|
16 |
openai-whisper==20240930
|
17 |
httpx==0.28.1
|
18 |
gradio==5.23.1
|
19 |
+
hf-transfer
|
20 |
+
soundfile
|
tts/frontend_function.py
CHANGED
@@ -16,6 +16,7 @@ import torch
|
|
16 |
import torch.nn.functional as F
|
17 |
import whisper
|
18 |
import librosa
|
|
|
19 |
from copy import deepcopy
|
20 |
from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph
|
21 |
from tts.utils.audio_utils.align import mel2token_to_dur
|
@@ -39,8 +40,26 @@ def g2p(self, text_inp):
|
|
39 |
''' Get phoneme2mel align of prompt speech '''
|
40 |
def align(self, wav):
|
41 |
with torch.inference_mode():
|
|
|
|
|
|
|
|
|
42 |
whisper_wav = librosa.resample(wav, orig_sr=self.sr, target_sr=16000)
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
prompt_max_frame = mel.size(2) // self.fm * self.fm
|
45 |
mel = mel[:, :, :prompt_max_frame]
|
46 |
token = torch.LongTensor([[798]]).to(self.device)
|
|
|
16 |
import torch.nn.functional as F
|
17 |
import whisper
|
18 |
import librosa
|
19 |
+
import numpy as np
|
20 |
from copy import deepcopy
|
21 |
from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph
|
22 |
from tts.utils.audio_utils.align import mel2token_to_dur
|
|
|
40 |
''' Get phoneme2mel align of prompt speech '''
|
41 |
def align(self, wav):
|
42 |
with torch.inference_mode():
|
43 |
+
# Validate input audio
|
44 |
+
if np.any(np.isnan(wav)) or np.any(np.isinf(wav)):
|
45 |
+
raise ValueError("Input audio contains NaN or infinite values")
|
46 |
+
|
47 |
whisper_wav = librosa.resample(wav, orig_sr=self.sr, target_sr=16000)
|
48 |
+
|
49 |
+
# Validate resampled audio
|
50 |
+
if np.any(np.isnan(whisper_wav)) or np.any(np.isinf(whisper_wav)):
|
51 |
+
raise ValueError("Resampled audio contains NaN or infinite values")
|
52 |
+
|
53 |
+
# Get mel spectrogram with validation
|
54 |
+
mel_spec = whisper.log_mel_spectrogram(whisper_wav)
|
55 |
+
if np.any(np.isnan(mel_spec)) or np.any(np.isinf(mel_spec)):
|
56 |
+
raise ValueError("Mel spectrogram contains NaN or infinite values")
|
57 |
+
|
58 |
+
mel = torch.FloatTensor(mel_spec.T).to(self.device)[None].transpose(1,2)
|
59 |
+
|
60 |
+
# Validate tensor before further processing
|
61 |
+
if torch.any(torch.isnan(mel)) or torch.any(torch.isinf(mel)):
|
62 |
+
raise ValueError("Mel tensor contains NaN or infinite values")
|
63 |
prompt_max_frame = mel.size(2) // self.fm * self.fm
|
64 |
mel = mel[:, :, :prompt_max_frame]
|
65 |
token = torch.LongTensor([[798]]).to(self.device)
|