Spaces:
Runtime error
Runtime error
import transformers | |
import gradio as gr | |
import tensorflow as tf | |
MODEL_DIRECTORY = './result/model' | |
PRETRAINED_MODEL_NAME = 'dbmdz/bert-base-german-cased' | |
TOKENIZER = transformers.BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME) | |
MAX_SEQUENCE_LENGTH = 300 | |
def encode(sentences, tokenizer, sequence_length): | |
return tokenizer.batch_encode_plus( | |
sentences, | |
max_length=sequence_length, # set the length of the sequences | |
add_special_tokens=True, # add [CLS] and [SEP] tokens | |
return_attention_mask=True, | |
return_token_type_ids=False, # not needed for this type of ML task | |
pad_to_max_length=True, # add 0 pad tokens to the sequences less than max_length | |
return_tensors='tf' | |
) | |
hs_detection_model = tf.keras.models.load_model(MODEL_DIRECTORY, compile=True) | |
def inference(sentence): | |
encoded_sentence = encode([sentence], TOKENIZER, MAX_SEQUENCE_LENGTH) | |
return hs_detection_model.predict(encoded_sentence.values()) | |
title = "HS-Detector Demonstrator" | |
description = """ | |
<center> | |
<p>Dataset: germeval18_hasoc19_rp21_combi_dataset (17,7% HS)</p> | |
<p>Das bisher beste Modell basierend auf Bert nach 2 Epochen und max. 300 Token pro Eintrag fine-tuning mit folgenden Evaluationsergebnissen:</p> | |
Accuracy: 0.8794712286158631<br/> | |
Balanced Accuracy: 0.7561891312100413<br/> | |
Binary F1-Score: 0.6249999999999999<br/> | |
Binary Precision: 0.6994584837545126<br/> | |
Binary Recall: 0.564868804664723<br/> | |
Weighted F1-Score: 0.8742843536656945<br/> | |
Weighted Precision: 0.8722794361456155<br/> | |
Weighted Recall: 0.8794712286158631<br/> | |
Macro F1-Score: 0.7765982087708463<br/> | |
Macro Precision: 0.80455672371745<br/> | |
Macro Recall: 0.7561891312100413<br/> | |
MCC score: 0.558655967312084<br/> | |
AUROC score: 0.7561891312100413<br/> | |
<img src="https://huggingface.co/spaces/course-demos/Rick_and_Morty_QA/resolve/main/rick.png" width=200px> | |
</center> | |
""" | |
article = "Die Eingaben werden nicht geloggt. Klassifikator einfach ausprobieren." | |
input_sentence_text = gr.inputs.Textbox(placeholder="Hier den Satz eingeben, der Hassrede enthalten kann.") | |
ui = gr.Interface(fn=inference, inputs=input_sentence_text, outputs="text", title = title, description = description, article = article) | |
ui.launch() |