Spaces:
Running
Running
TedYeh
commited on
Commit
·
e774cd9
1
Parent(s):
8a7491d
update files
Browse files- app.py +25 -4
- dataloader.py +73 -0
- models/model_7.pt +3 -0
- predictor.py +284 -0
- requirements.txt +7 -0
app.py
CHANGED
@@ -1,7 +1,28 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from predictor import inference
|
3 |
|
4 |
+
def index_predict(name):
|
5 |
+
outputs, preds, heights, bust, waist, hips, description = inference(os.path.join(app.config['UPLOAD_FOLDER'], filename), epoch = 7)
|
6 |
+
return heights, round(float(bust)), round(float(waist)), round(float(hips)), description[0], description[1]
|
7 |
|
8 |
+
with gr.Blocks() as demo:
|
9 |
+
gr.Markdown(
|
10 |
+
"""
|
11 |
+
# 身材數據評估器 - Body Index Predictor
|
12 |
+
### Input A FACE and get the body index
|
13 |
+
"""
|
14 |
+
)
|
15 |
+
image = gr.Image(type="pil")
|
16 |
+
# 設定輸出元件
|
17 |
+
heights = gr.Textbox(label="Heignt")
|
18 |
+
bust = gr.Textbox(label="Bust")
|
19 |
+
waist = gr.Textbox(label="Waist")
|
20 |
+
hips = gr.Textbox(label="Hips")
|
21 |
+
en_des = gr.Textbox(label="English description")
|
22 |
+
zh_des = gr.Textbox(label="Chinese description")
|
23 |
+
|
24 |
+
#設定按鈕
|
25 |
+
submit = gr.Button("Submit")
|
26 |
+
#設定按鈕點選事件
|
27 |
+
greet_btn.click(fn=index_predict, inputs=image, outputs=[heights, bust, waist, hips, en_des, zh_des])
|
28 |
+
demo.launch()
|
dataloader.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from random import shuffle
|
2 |
+
import torch
|
3 |
+
import csv, os
|
4 |
+
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, Dataset, SequentialSampler
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from torchvision.io import read_image
|
7 |
+
import torch.nn as nn
|
8 |
+
from torchvision import transforms
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
import math
|
13 |
+
from transformers import AutoImageProcessor
|
14 |
+
|
15 |
+
class imgDataset(Dataset):
|
16 |
+
def __init__(self, path, mode='train', use_processor=True):
|
17 |
+
self.path = path
|
18 |
+
self.mode = mode
|
19 |
+
self.use_processor = use_processor
|
20 |
+
self.image_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
21 |
+
self.transform = {
|
22 |
+
'train': transforms.Compose([
|
23 |
+
transforms.RandomResizedCrop(224),
|
24 |
+
transforms.RandomHorizontalFlip(),
|
25 |
+
transforms.ToTensor(),
|
26 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
27 |
+
]),
|
28 |
+
'val': transforms.Compose([
|
29 |
+
transforms.Resize(256),
|
30 |
+
transforms.CenterCrop(224),
|
31 |
+
transforms.ToTensor(),
|
32 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
33 |
+
])
|
34 |
+
}
|
35 |
+
self.trans = self.transform[mode]
|
36 |
+
self.data = self.get_data()
|
37 |
+
|
38 |
+
def convert_body_to_int(self, pos, file_name_list):
|
39 |
+
body_str = file_name_list[1].split('-')[pos]
|
40 |
+
if not body_str: body_str = '62'
|
41 |
+
body = int(body_str[1:3]) if not body_str.isdigit() else int(body_str)
|
42 |
+
body = 100+body if body <= 25 else body
|
43 |
+
return body
|
44 |
+
|
45 |
+
def get_data(self):
|
46 |
+
data = []
|
47 |
+
with open(self.path, 'r', encoding='utf-8') as f:
|
48 |
+
for line in f.readlines():
|
49 |
+
file_name_list = line.split(' ')
|
50 |
+
if not self.mode in file_name_list:continue
|
51 |
+
label, h = 0 if file_name_list[2]=="big" else 1, float(file_name_list[3])
|
52 |
+
b = self.convert_body_to_int(0, file_name_list)
|
53 |
+
w = self.convert_body_to_int(1, file_name_list)
|
54 |
+
hh = self.convert_body_to_int(2, file_name_list)
|
55 |
+
data.append([os.path.join('images', file_name_list[0], file_name_list[2], file_name_list[1]), label, h, b, w, hh])
|
56 |
+
return data
|
57 |
+
|
58 |
+
def __len__(self):
|
59 |
+
return len(self.data)
|
60 |
+
|
61 |
+
def __getitem__(self, idx):
|
62 |
+
img_path, label, h, b, w, hh = self.data[idx]
|
63 |
+
inp_img = Image.open(img_path).convert("RGB")
|
64 |
+
if not self.use_processor: image_tensor = self.trans(inp_img)
|
65 |
+
else:image_tensor = self.image_processor(images=inp_img, return_tensors="pt")
|
66 |
+
return image_tensor, label, torch.tensor(h, dtype=torch.float), torch.tensor(b, dtype=torch.float), torch.tensor(w, dtype=torch.float), torch.tensor(hh, dtype=torch.float)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
train_dataset = imgDataset('labels.txt', mode='train')
|
70 |
+
test_dataset = imgDataset('labels.txt', mode='val')
|
71 |
+
train_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
72 |
+
print(len(train_dataset), len(test_dataset))
|
73 |
+
print(next(iter(train_dataloader)))
|
models/model_7.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14e707cfc153a9bfe7d61b2eb87e7ab4b68a90cc9131d72ffd53fa96f18bcc3c
|
3 |
+
size 99083113
|
predictor.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import print_function, division
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
from torch.optim import lr_scheduler
|
7 |
+
import torch.backends.cudnn as cudnn
|
8 |
+
import numpy as np
|
9 |
+
import torchvision
|
10 |
+
from torchvision import datasets, models, transforms
|
11 |
+
from torch.utils.data import TensorDataset, DataLoader
|
12 |
+
from PIL import Image
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
from dataloader import imgDataset
|
15 |
+
import time
|
16 |
+
import os
|
17 |
+
import copy
|
18 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
19 |
+
from transformers import AutoImageProcessor, ResNetModel
|
20 |
+
from translate import Translator
|
21 |
+
|
22 |
+
PATH = './images/'
|
23 |
+
|
24 |
+
class CUPredictor_v2(nn.Module):
|
25 |
+
def __init__(self, num_class=2):
|
26 |
+
super(CUPredictor_v2, self).__init__()
|
27 |
+
self.base = ResNetModel.from_pretrained("microsoft/resnet-50")
|
28 |
+
num_ftrs = 2048
|
29 |
+
#self.base.fc = nn.Linear(num_ftrs, num_ftrs//2)
|
30 |
+
self.classifier = nn.Linear(num_ftrs, num_class)
|
31 |
+
self.height_regressor = nn.Linear(num_ftrs, 1)
|
32 |
+
self.relu = nn.ReLU()
|
33 |
+
|
34 |
+
def forward(self, input_img):
|
35 |
+
output = self.base(input_img['pixel_values'].squeeze(1)).pooler_output.squeeze()
|
36 |
+
predict_cls = self.classifier(output)
|
37 |
+
predict_height = self.relu(self.height_regressor(output))
|
38 |
+
return predict_cls, predict_height
|
39 |
+
|
40 |
+
class CUPredictor(nn.Module):
|
41 |
+
def __init__(self, num_class=2):
|
42 |
+
super(CUPredictor, self).__init__()
|
43 |
+
self.base = torchvision.models.resnet50(pretrained=True)
|
44 |
+
for param in self.base.parameters():
|
45 |
+
param.requires_grad = False
|
46 |
+
|
47 |
+
num_ftrs = self.base.fc.in_features
|
48 |
+
self.base.fc = nn.Sequential(
|
49 |
+
nn.Linear(num_ftrs, num_ftrs//4),
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Linear(num_ftrs//4, num_ftrs//8),
|
52 |
+
nn.ReLU()
|
53 |
+
)
|
54 |
+
self.classifier = nn.Linear(num_ftrs//8, num_class)
|
55 |
+
self.regressor_h = nn.Linear(num_ftrs//8, 1)
|
56 |
+
self.regressor_b = nn.Linear(num_ftrs//8, 1)
|
57 |
+
self.regressor_w = nn.Linear(num_ftrs//8, 1)
|
58 |
+
self.regressor_hi = nn.Linear(num_ftrs//8, 1)
|
59 |
+
self.relu = nn.ReLU()
|
60 |
+
|
61 |
+
def forward(self, input_img):
|
62 |
+
output = self.base(input_img)
|
63 |
+
predict_cls = self.classifier(output)
|
64 |
+
predict_h = self.relu(self.regressor_h(output))
|
65 |
+
predict_b = self.relu(self.regressor_b(output))
|
66 |
+
predict_w = self.relu(self.regressor_w(output))
|
67 |
+
predict_hi = self.relu(self.regressor_hi(output))
|
68 |
+
return predict_cls, predict_h, predict_b, predict_w, predict_hi
|
69 |
+
|
70 |
+
|
71 |
+
def imshow(inp, title=None):
|
72 |
+
"""Imshow for Tensor."""
|
73 |
+
inp = inp.numpy().transpose((1, 2, 0))
|
74 |
+
mean = np.array([0.485, 0.456, 0.406])
|
75 |
+
std = np.array([0.229, 0.224, 0.225])
|
76 |
+
inp = std * inp + mean
|
77 |
+
inp = np.clip(inp, 0, 1)
|
78 |
+
plt.imshow(inp)
|
79 |
+
if title is not None:
|
80 |
+
plt.title(title)
|
81 |
+
plt.pause(0.001) # pause a bit so that plots are updated
|
82 |
+
plt.savefig(f'images/preds/prediction.png')
|
83 |
+
|
84 |
+
def train_model(model, device, dataloaders, dataset_sizes, num_epochs=25):
|
85 |
+
since = time.time()
|
86 |
+
ce = nn.CrossEntropyLoss()
|
87 |
+
mse = nn.MSELoss()
|
88 |
+
optimizer = optim.AdamW(model.parameters(), lr=0.0008)
|
89 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
90 |
+
best_acc = 0.0
|
91 |
+
|
92 |
+
for epoch in range(num_epochs):
|
93 |
+
print(f'Epoch {epoch+1}/{num_epochs}')
|
94 |
+
print('-' * 10)
|
95 |
+
|
96 |
+
# Each epoch has a training and validation phase
|
97 |
+
for phase in ['train', 'val']:
|
98 |
+
if phase == 'train':
|
99 |
+
model.train() # Set model to training mode
|
100 |
+
else:
|
101 |
+
model.eval() # Set model to evaluate mode
|
102 |
+
|
103 |
+
running_ce_loss = 0.0
|
104 |
+
running_rmse_loss = 0.0
|
105 |
+
running_corrects = 0
|
106 |
+
|
107 |
+
# Iterate over data.
|
108 |
+
for inputs, labels, heights, bust, waist, hips in dataloaders[phase]:
|
109 |
+
inputs = inputs.to(device)
|
110 |
+
labels = labels.to(device)
|
111 |
+
heights = heights.to(device)
|
112 |
+
bust = bust.to(device)
|
113 |
+
waist, hips = waist.to(device), hips.to(device)
|
114 |
+
# zero the parameter gradients
|
115 |
+
optimizer.zero_grad()
|
116 |
+
|
117 |
+
# forward
|
118 |
+
# track history if only in train
|
119 |
+
with torch.set_grad_enabled(phase == 'train'):
|
120 |
+
outputs_c, outputs_h, outputs_b, outputs_w, outputs_hi = model(inputs)
|
121 |
+
_, preds = torch.max(outputs_c, 1)
|
122 |
+
ce_loss = ce(outputs_c, labels)
|
123 |
+
rmse_loss_h = torch.sqrt(mse(outputs_h, heights.unsqueeze(-1)))
|
124 |
+
rmse_loss_b = torch.sqrt(mse(outputs_b, bust.unsqueeze(-1)))
|
125 |
+
rmse_loss_w = torch.sqrt(mse(outputs_w, waist.unsqueeze(-1)))
|
126 |
+
rmse_loss_hi = torch.sqrt(mse(outputs_hi, hips.unsqueeze(-1)))
|
127 |
+
rmse_loss = rmse_loss_h*4 + rmse_loss_b*2 + rmse_loss_w + rmse_loss_hi
|
128 |
+
loss = ce_loss + (rmse_loss)*1
|
129 |
+
|
130 |
+
# backward + optimize only if in training phase
|
131 |
+
if phase == 'train':
|
132 |
+
loss.backward()
|
133 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
134 |
+
optimizer.step()
|
135 |
+
|
136 |
+
# statistics
|
137 |
+
running_ce_loss += ce_loss.item() * inputs.size(0)
|
138 |
+
running_rmse_loss += rmse_loss.item() * inputs.size(0)
|
139 |
+
running_corrects += torch.sum(preds == labels.data)
|
140 |
+
|
141 |
+
epoch_ce_loss = running_ce_loss / dataset_sizes[phase]
|
142 |
+
epoch_rmse_loss = running_rmse_loss / dataset_sizes[phase]
|
143 |
+
epoch_acc = running_corrects.double() / dataset_sizes[phase]
|
144 |
+
|
145 |
+
print(f'{phase} CE_Loss: {epoch_ce_loss:.4f} RMSE_Loss: {epoch_rmse_loss:.4f} Acc: {epoch_acc:.4f}')
|
146 |
+
|
147 |
+
# deep copy the model
|
148 |
+
if phase == 'val' and epoch_acc > best_acc:
|
149 |
+
best_acc = epoch_acc
|
150 |
+
best_model_wts = copy.deepcopy(model.state_dict())
|
151 |
+
#if epoch %2 == 0 and phase == 'val':print(outputs_c, outputs_h)
|
152 |
+
print()
|
153 |
+
|
154 |
+
time_elapsed = time.time() - since
|
155 |
+
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
|
156 |
+
print(f'Best val Acc: {best_acc:4f}')
|
157 |
+
|
158 |
+
# load best model weights
|
159 |
+
model.load_state_dict(best_model_wts)
|
160 |
+
return model
|
161 |
+
|
162 |
+
def visualize_model(model, device, dataloaders, class_names, num_images=6):
|
163 |
+
was_training = model.training
|
164 |
+
model.eval()
|
165 |
+
images_so_far = 0
|
166 |
+
fig = plt.figure()
|
167 |
+
|
168 |
+
with torch.no_grad():
|
169 |
+
for i, (inputs, labels) in enumerate(dataloaders['val']):
|
170 |
+
inputs = inputs.to(device)
|
171 |
+
labels = labels.to(device)
|
172 |
+
|
173 |
+
outputs = model(inputs)
|
174 |
+
_, preds = torch.max(outputs, 1)
|
175 |
+
|
176 |
+
for j in range(inputs.size()[0]):
|
177 |
+
images_so_far += 1
|
178 |
+
ax = plt.subplot(num_images//2, 2, images_so_far)
|
179 |
+
ax.axis('off')
|
180 |
+
ax.set_title(f'pred: {class_names[preds[j]]}|tar: {class_names[labels[j]]}')
|
181 |
+
imshow(inputs.cpu().data[j])
|
182 |
+
|
183 |
+
if images_so_far == num_images:
|
184 |
+
model.train(mode=was_training)
|
185 |
+
return
|
186 |
+
model.train(mode=was_training)
|
187 |
+
|
188 |
+
def evaluation(model, epoch, device, dataloaders):
|
189 |
+
model.load_state_dict(torch.load(f'models/model_{epoch}.pt'))
|
190 |
+
model.eval()
|
191 |
+
with torch.no_grad():
|
192 |
+
for i, (inputs, labels) in enumerate(dataloaders['val']):
|
193 |
+
inputs = inputs.to(device)
|
194 |
+
labels = labels.to(device)
|
195 |
+
|
196 |
+
outputs = model(inputs)
|
197 |
+
_, preds = torch.max(outputs, 1)
|
198 |
+
print(preds)
|
199 |
+
|
200 |
+
def inference(inp_img, classes = ['big', 'small'], epoch = 6):
|
201 |
+
device = torch.device("cpu")
|
202 |
+
translator= Translator(to_lang="zh-TW")
|
203 |
+
|
204 |
+
model = model = CUPredictor()
|
205 |
+
model.load_state_dict(torch.load(f'models/model_{epoch}.pt'))
|
206 |
+
# load image-to-text model
|
207 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
208 |
+
model_blip = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
209 |
+
model.eval()
|
210 |
+
|
211 |
+
trans = transforms.Compose([
|
212 |
+
transforms.Resize(256),
|
213 |
+
transforms.CenterCrop(224),
|
214 |
+
transforms.ToTensor(),
|
215 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
216 |
+
])
|
217 |
+
|
218 |
+
image_tensor = trans(inp_img)
|
219 |
+
image_tensor = image_tensor.unsqueeze(0)
|
220 |
+
with torch.no_grad():
|
221 |
+
inputs = image_tensor.to(device)
|
222 |
+
outputs_c, outputs_h, outputs_b, outputs_w, outputs_hi = model(inputs)
|
223 |
+
_, preds = torch.max(outputs_c, 1)
|
224 |
+
idx = preds.numpy()[0]
|
225 |
+
|
226 |
+
# unconditional image captioning
|
227 |
+
inputs = processor(inp_img, return_tensors="pt")
|
228 |
+
out = model_blip.generate(**inputs)
|
229 |
+
description = processor.decode(out[0], skip_special_tokens=True)
|
230 |
+
description_tw = translator.translate(description)
|
231 |
+
return outputs_c, classes[idx], f"{outputs_h.numpy()[0][0]:.2f}", f"{outputs_b.numpy()[0][0]:.2f}", f"{outputs_w.numpy()[0][0]:.2f}", f"{outputs_hi.numpy()[0][0]:.2f}", [description, description_tw]
|
232 |
+
|
233 |
+
def main(epoch = 15, mode = 'val'):
|
234 |
+
cudnn.benchmark = True
|
235 |
+
plt.ion() # interactive mode
|
236 |
+
model = CUPredictor()
|
237 |
+
train_dataset = imgDataset('labels.txt', mode='train', use_processor=False)
|
238 |
+
test_dataset = imgDataset('labels.txt', mode='val', use_processor=False)
|
239 |
+
dataloaders = {
|
240 |
+
"train": DataLoader(train_dataset, batch_size=64, shuffle=True),
|
241 |
+
"val": DataLoader(test_dataset, batch_size=64, shuffle=False)
|
242 |
+
}
|
243 |
+
dataset_sizes = {
|
244 |
+
"train": len(train_dataset),
|
245 |
+
"val": len(test_dataset)
|
246 |
+
}
|
247 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
248 |
+
#device = torch.device("cpu")
|
249 |
+
model = model.to(device)
|
250 |
+
model_conv = train_model(model, device, dataloaders, dataset_sizes, num_epochs=epoch)
|
251 |
+
torch.save(model_conv.state_dict(), f'models/model_{epoch}.pt')
|
252 |
+
|
253 |
+
def divide_class_dir(path):
|
254 |
+
file_list = os.listdir(path)
|
255 |
+
for img_name in file_list:
|
256 |
+
dest_path = os.path.join(path, img_name.split('-')[3])
|
257 |
+
if not os.path.exists(dest_path):
|
258 |
+
os.mkdir(dest_path) # 建立資料夾
|
259 |
+
os.replace(os.path.join(path, img_name), os.path.join(dest_path, img_name))
|
260 |
+
|
261 |
+
def get_label(types):
|
262 |
+
with open('labels.txt', 'w', encoding='utf-8') as f:
|
263 |
+
for f_type in types:
|
264 |
+
for img_type in CLASS:
|
265 |
+
path = os.path.join('images', f_type, img_type)
|
266 |
+
file_list = os.listdir(path)
|
267 |
+
for file_name in file_list:
|
268 |
+
file_name_list = file_name.split('-')
|
269 |
+
f.write(" ".join([f_type, file_name, img_type, file_name_list[4].split('_')[0], '\n']))
|
270 |
+
|
271 |
+
if __name__ == "__main__":
|
272 |
+
|
273 |
+
CLASS = ['big', 'small']
|
274 |
+
mode = 'train'
|
275 |
+
get_label(['train', 'val'])
|
276 |
+
epoch = 7
|
277 |
+
#main(epoch, mode = mode)
|
278 |
+
|
279 |
+
outputs, preds, heights, bust, waist, hips, description = inference('images/test/lin.png', CLASS, epoch=epoch)
|
280 |
+
print(outputs, preds, heights, bust, waist, hips)
|
281 |
+
#print(CUPredictor())
|
282 |
+
#divide_class_dir('./images/train_all')
|
283 |
+
#divide_class_dir('./images/val_all')
|
284 |
+
''''''
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
translate
|
4 |
+
torchvision
|
5 |
+
scikit-learn
|
6 |
+
pandas
|
7 |
+
numpy
|