Spaces:
Runtime error
Runtime error
File size: 5,303 Bytes
c1ae314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import cv2
from PIL import Image
import numpy as np
from rembg import remove
import os
import shutil
import glob
import moviepy.editor as mp
from moviepy.editor import *
def cv_to_pil(img):
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA))
def pil_to_cv(img):
return cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA)
def video_to_images(video_path, images_path):
# Open video
cam = cv2.VideoCapture(video_path)
# Get FPS
fps = cam.get(cv2.CAP_PROP_FPS)
# Extract audio
clip = mp.VideoFileClip(video_path)
clip.audio.write_audiofile("./audio.mp3")
# Create folder for images
if not os.path.exists(images_path):
os.makedirs(images_path)
else:
shutil.rmtree(images_path)
os.makedirs(images_path)
# Go through frames of video
frameno = 0
while (True):
ret, frame = cam.read()
if ret:
# if video is still left continue creating images
name = images_path + str(frameno).zfill(5) + '.png'
print('new frame captured... ', frameno)
# Save frame
cv2.imwrite(name, frame, [int(cv2.IMWRITE_PNG_COMPRESSION), 0])
frameno += 1
else:
break
# Close video
cam.release()
cv2.destroyAllWindows()
return fps
def images_to_video(images_path, video_export_path, fps):
# Get a list of PNG images on the "test_images" folder
images = glob.glob(images_path + "*.png")
# Sort images by name
images = sorted(images)
# Read the first image to get the frame size
frame = cv2.imread(images[0])
height, width, layers = frame.shape
temp_video_path = './temp-video.mp4'
# Codec
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
fourcc = cv2.VideoWriter_fourcc(*'XVID')
# fourcc = cv2.VideoWriter_fourcc(*'MPEG')
# Create final video
video = cv2.VideoWriter(filename=temp_video_path, fourcc=fourcc, fps=fps, frameSize=(width, height))
# Read each image and write it to the video
for i, image in enumerate(images):
print("Writing frame to video ", i, '/', len(images))
# Read the image using OpenCV
frame = cv2.imread(image)
# Write frame to video
video.write(frame)
# Exit the video writer
video.release()
# Open final video
videoclip = VideoFileClip(temp_video_path)
# Add audio to final video
audioclip = AudioFileClip("./audio.mp3")
new_audioclip = CompositeAudioClip([audioclip])
videoclip.audio = new_audioclip
# Save final video
videoclip.write_videofile(video_export_path, audio_codec='aac', codec='libx264')
# Delete temp files
os.remove(temp_video_path)
os.remove("./audio.mp3")
def motion_blur(img, distance, amount):
# Convert to RGBA
img = img.convert('RGBA')
# Convert pil to cv
cv_img = pil_to_cv(img)
# Generating the kernel
kernel_motion_blur = np.zeros((distance, distance))
kernel_motion_blur[int((distance - 1) / 2), :] = np.ones(distance)
kernel_motion_blur = kernel_motion_blur / distance
# Applying the kernel to the input image
output = cv2.filter2D(cv_img, -1, kernel_motion_blur)
# Convert cv to pil
blur_img = cv_to_pil(output).convert('RGBA')
# Blend the original image and the blur image
final_img = Image.blend(img, blur_img, amount)
return final_img
def background_motion_blur(background, distance_blur, amount_blur):
# Remove background
subject = remove(background)
amount_subject = 1
# Blur the background
background_blur = motion_blur(background, distance_blur, amount_blur)
# Put the subject on top of the blur background
subject_on_blur_background = background_blur.copy()
subject_on_blur_background.paste(background, (0, 0), subject)
# Blend the subject and the blur background
result = Image.blend(background_blur, subject_on_blur_background, amount_subject)
return result
def video_motion_blur(video_path, export_video_path, distance_blur, amount_blur, amount_subject):
# Image folder
images_path = './images/'
# Convert video to images and save FPS
fps = video_to_images(video_path, images_path)
# Create list of images
image_path_list = glob.glob(images_path + "*.png")
# Sort images by name
image_path_list = sorted(image_path_list)
# Create folder for blur images
blur_images_path = './blur_images/'
if not os.path.exists(blur_images_path):
os.makedirs(blur_images_path)
else:
shutil.rmtree(blur_images_path)
os.makedirs(blur_images_path)
# Go through image folder
count = 0
for filename in image_path_list:
# Open image an PIL image
img = Image.open(filename)
# Motion blur image
blur_img = background_motion_blur(img, distance_blur, amount_blur, amount_subject)
# Save blurred image
blur_img.save(blur_images_path + str(count).zfill(5) + '.png')
print('motion blur', str(count), '/', len(image_path_list))
count += 1
# Convert blurred images to final video
images_to_video(blur_images_path, export_video_path, fps)
# Delete temp folders
shutil.rmtree(images_path)
shutil.rmtree(blur_images_path)
|