Spaces:
Runtime error
Runtime error
Update newapi.py
Browse files
newapi.py
CHANGED
@@ -5,20 +5,17 @@ import torch
|
|
5 |
from torchvision import transforms
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
-
import os
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
from models.TumorModel import TumorClassification, GliomaStageModel
|
12 |
from utils import get_precautions_from_gemini
|
13 |
|
14 |
-
# ✅
|
15 |
-
cache_dir = "./hf_cache"
|
16 |
-
os.makedirs(cache_dir, exist_ok=True) # create if it doesn't exist
|
17 |
|
18 |
# Initialize FastAPI app
|
19 |
app = FastAPI(title="Brain Tumor Detection API")
|
20 |
|
21 |
-
# Enable CORS
|
22 |
app.add_middleware(
|
23 |
CORSMiddleware,
|
24 |
allow_origins=["*"],
|
@@ -27,27 +24,25 @@ app.add_middleware(
|
|
27 |
allow_headers=["*"],
|
28 |
)
|
29 |
|
30 |
-
# Load
|
31 |
btd_model_path = hf_hub_download(
|
32 |
repo_id="Codewithsalty/brain-tumor-models",
|
33 |
-
filename="BTD_model.pth"
|
34 |
-
cache_dir=cache_dir
|
35 |
)
|
36 |
tumor_model = TumorClassification()
|
37 |
tumor_model.load_state_dict(torch.load(btd_model_path, map_location="cpu"))
|
38 |
tumor_model.eval()
|
39 |
|
40 |
-
# Load
|
41 |
glioma_model_path = hf_hub_download(
|
42 |
repo_id="Codewithsalty/brain-tumor-models",
|
43 |
-
filename="glioma_stages.pth"
|
44 |
-
cache_dir=cache_dir
|
45 |
)
|
46 |
glioma_model = GliomaStageModel()
|
47 |
glioma_model.load_state_dict(torch.load(glioma_model_path, map_location="cpu"))
|
48 |
glioma_model.eval()
|
49 |
|
50 |
-
# Image preprocessing
|
51 |
transform = transforms.Compose([
|
52 |
transforms.Grayscale(),
|
53 |
transforms.Resize((224, 224)),
|
@@ -55,17 +50,19 @@ transform = transforms.Compose([
|
|
55 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
56 |
])
|
57 |
|
|
|
58 |
@app.get("/")
|
59 |
async def root():
|
60 |
return {"message": "Brain Tumor Detection API is running."}
|
61 |
|
62 |
-
#
|
63 |
labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
64 |
|
|
|
65 |
@app.post("/predict-image")
|
66 |
async def predict_image(file: UploadFile = File(...)):
|
67 |
img_bytes = await file.read()
|
68 |
-
img = Image.open(io.BytesIO(img_bytes)).convert("L")
|
69 |
x = transform(img).unsqueeze(0)
|
70 |
|
71 |
with torch.no_grad():
|
@@ -79,7 +76,7 @@ async def predict_image(file: UploadFile = File(...)):
|
|
79 |
precautions = get_precautions_from_gemini(tumor_type)
|
80 |
return {"tumor_type": tumor_type, "precaution": precautions}
|
81 |
|
82 |
-
#
|
83 |
class MutationInput(BaseModel):
|
84 |
gender: str
|
85 |
age: float
|
@@ -91,6 +88,7 @@ class MutationInput(BaseModel):
|
|
91 |
cic: int
|
92 |
pik3ca: int
|
93 |
|
|
|
94 |
@app.post("/predict-glioma-stage")
|
95 |
async def predict_glioma_stage(data: MutationInput):
|
96 |
gender_val = 0 if data.gender.lower() == 'm' else 1
|
@@ -106,7 +104,4 @@ async def predict_glioma_stage(data: MutationInput):
|
|
106 |
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
107 |
return {"glioma_stage": stages[idx]}
|
108 |
|
109 |
-
#
|
110 |
-
if __name__ == "__main__":
|
111 |
-
import uvicorn
|
112 |
-
uvicorn.run("newapi:app", host="0.0.0.0", port=10000)
|
|
|
5 |
from torchvision import transforms
|
6 |
from PIL import Image
|
7 |
import io
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
|
10 |
from models.TumorModel import TumorClassification, GliomaStageModel
|
11 |
from utils import get_precautions_from_gemini
|
12 |
|
13 |
+
# ✅ Let Hugging Face handle cache automatically — DO NOT manually create any folders
|
|
|
|
|
14 |
|
15 |
# Initialize FastAPI app
|
16 |
app = FastAPI(title="Brain Tumor Detection API")
|
17 |
|
18 |
+
# Enable CORS for all origins
|
19 |
app.add_middleware(
|
20 |
CORSMiddleware,
|
21 |
allow_origins=["*"],
|
|
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
|
27 |
+
# ✅ Load Tumor Classification Model from Hugging Face
|
28 |
btd_model_path = hf_hub_download(
|
29 |
repo_id="Codewithsalty/brain-tumor-models",
|
30 |
+
filename="BTD_model.pth"
|
|
|
31 |
)
|
32 |
tumor_model = TumorClassification()
|
33 |
tumor_model.load_state_dict(torch.load(btd_model_path, map_location="cpu"))
|
34 |
tumor_model.eval()
|
35 |
|
36 |
+
# ✅ Load Glioma Stage Prediction Model from Hugging Face
|
37 |
glioma_model_path = hf_hub_download(
|
38 |
repo_id="Codewithsalty/brain-tumor-models",
|
39 |
+
filename="glioma_stages.pth"
|
|
|
40 |
)
|
41 |
glioma_model = GliomaStageModel()
|
42 |
glioma_model.load_state_dict(torch.load(glioma_model_path, map_location="cpu"))
|
43 |
glioma_model.eval()
|
44 |
|
45 |
+
# Image preprocessing pipeline
|
46 |
transform = transforms.Compose([
|
47 |
transforms.Grayscale(),
|
48 |
transforms.Resize((224, 224)),
|
|
|
50 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
51 |
])
|
52 |
|
53 |
+
# Health check endpoint
|
54 |
@app.get("/")
|
55 |
async def root():
|
56 |
return {"message": "Brain Tumor Detection API is running."}
|
57 |
|
58 |
+
# Tumor type labels
|
59 |
labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
60 |
|
61 |
+
# Predict tumor type from uploaded image
|
62 |
@app.post("/predict-image")
|
63 |
async def predict_image(file: UploadFile = File(...)):
|
64 |
img_bytes = await file.read()
|
65 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("L") # Ensure grayscale
|
66 |
x = transform(img).unsqueeze(0)
|
67 |
|
68 |
with torch.no_grad():
|
|
|
76 |
precautions = get_precautions_from_gemini(tumor_type)
|
77 |
return {"tumor_type": tumor_type, "precaution": precautions}
|
78 |
|
79 |
+
# Input model for glioma mutation data
|
80 |
class MutationInput(BaseModel):
|
81 |
gender: str
|
82 |
age: float
|
|
|
88 |
cic: int
|
89 |
pik3ca: int
|
90 |
|
91 |
+
# Predict glioma stage based on mutations
|
92 |
@app.post("/predict-glioma-stage")
|
93 |
async def predict_glioma_stage(data: MutationInput):
|
94 |
gender_val = 0 if data.gender.lower() == 'm' else 1
|
|
|
104 |
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
105 |
return {"glioma_stage": stages[idx]}
|
106 |
|
107 |
+
# ✅ No need to run uvicorn manually in Hugging Face Spaces
|
|
|
|
|
|