Spaces:
Runtime error
Runtime error
Update newapi.py
Browse files
newapi.py
CHANGED
@@ -1,68 +1,59 @@
|
|
1 |
-
import
|
2 |
-
from fastapi import FastAPI, UploadFile, File
|
3 |
from fastapi.responses import JSONResponse
|
4 |
-
from
|
5 |
import torch
|
6 |
import torchvision.transforms as transforms
|
7 |
-
from
|
|
|
8 |
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
btd_model_path = "brain_tumor_model.pth"
|
13 |
-
glioma_model_path = "glioma_stage_model.pth"
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
btd_model.load_state_dict(torch.load(btd_model_path, map_location=torch.device('cpu')))
|
18 |
btd_model.eval()
|
19 |
|
20 |
-
#
|
21 |
-
glioma_model = GliomaStageModel()
|
22 |
-
glioma_model.load_state_dict(torch.load(glioma_model_path, map_location=torch.device('cpu')))
|
23 |
-
glioma_model.eval()
|
24 |
-
|
25 |
-
# === Image Transform ===
|
26 |
transform = transforms.Compose([
|
27 |
-
transforms.Resize((224, 224)),
|
28 |
transforms.ToTensor(),
|
|
|
29 |
])
|
30 |
|
31 |
-
|
|
|
|
|
32 |
|
33 |
@app.post("/predict/")
|
34 |
async def predict(file: UploadFile = File(...)):
|
35 |
try:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
with torch.no_grad():
|
40 |
-
output = btd_model(image)
|
41 |
-
predicted = torch.argmax(output, dim=1).item()
|
42 |
-
|
43 |
-
classes = ['No Tumor', 'Pituitary', 'Meningioma', 'Glioma']
|
44 |
-
result = classes[predicted]
|
45 |
-
|
46 |
-
return JSONResponse(content={"prediction": result})
|
47 |
-
|
48 |
-
except Exception as e:
|
49 |
-
return JSONResponse(content={"error": str(e)})
|
50 |
-
|
51 |
-
|
52 |
-
@app.post("/glioma-stage/")
|
53 |
-
async def glioma_stage(file: UploadFile = File(...)):
|
54 |
-
try:
|
55 |
-
image = Image.open(file.file).convert("RGB")
|
56 |
image = transform(image).unsqueeze(0)
|
57 |
|
|
|
58 |
with torch.no_grad():
|
59 |
-
|
60 |
-
predicted = torch.
|
61 |
-
|
62 |
-
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
63 |
-
result = stages[predicted]
|
64 |
|
65 |
-
|
|
|
|
|
66 |
|
|
|
|
|
67 |
except Exception as e:
|
68 |
-
return JSONResponse(content={"error": str(e)})
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
|
|
2 |
from fastapi.responses import JSONResponse
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
import torch
|
5 |
import torchvision.transforms as transforms
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
|
9 |
+
from utils import YourModelClass # Make sure this matches your actual model class
|
10 |
|
11 |
+
app = FastAPI()
|
|
|
|
|
12 |
|
13 |
+
# CORS Middleware (optional but good for frontend API usage)
|
14 |
+
app.add_middleware(
|
15 |
+
CORSMiddleware,
|
16 |
+
allow_origins=["*"],
|
17 |
+
allow_credentials=True,
|
18 |
+
allow_methods=["*"],
|
19 |
+
allow_headers=["*"],
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load model
|
23 |
+
btd_model_path = "models/BTD_model.pth" # ✅ Correct filename and folder
|
24 |
+
btd_model = YourModelClass()
|
25 |
btd_model.load_state_dict(torch.load(btd_model_path, map_location=torch.device('cpu')))
|
26 |
btd_model.eval()
|
27 |
|
28 |
+
# Image transformation (adjust according to how your model was trained)
|
|
|
|
|
|
|
|
|
|
|
29 |
transform = transforms.Compose([
|
30 |
+
transforms.Resize((224, 224)), # Adjust to your model's expected input size
|
31 |
transforms.ToTensor(),
|
32 |
+
transforms.Normalize(mean=[0.5], std=[0.5]) # Adjust for grayscale or RGB
|
33 |
])
|
34 |
|
35 |
+
@app.get("/")
|
36 |
+
def root():
|
37 |
+
return {"message": "Brain Tumor Detection API is up and running!"}
|
38 |
|
39 |
@app.post("/predict/")
|
40 |
async def predict(file: UploadFile = File(...)):
|
41 |
try:
|
42 |
+
# Read image
|
43 |
+
contents = await file.read()
|
44 |
+
image = Image.open(io.BytesIO(contents)).convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
image = transform(image).unsqueeze(0)
|
46 |
|
47 |
+
# Run model
|
48 |
with torch.no_grad():
|
49 |
+
outputs = btd_model(image)
|
50 |
+
_, predicted = torch.max(outputs, 1)
|
|
|
|
|
|
|
51 |
|
52 |
+
# Class mapping (adjust according to your model's labels)
|
53 |
+
classes = ['No Tumor', 'Glioma', 'Meningioma', 'Pituitary']
|
54 |
+
prediction = classes[predicted.item()]
|
55 |
|
56 |
+
return JSONResponse({"prediction": prediction})
|
57 |
+
|
58 |
except Exception as e:
|
59 |
+
return JSONResponse(status_code=500, content={"error": str(e)})
|