Spaces:
Runtime error
Runtime error
Update newapi.py
Browse files
newapi.py
CHANGED
@@ -6,17 +6,18 @@ from torchvision import transforms
|
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
import os
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
|
|
|
|
|
|
|
|
|
11 |
from models.TumorModel import TumorClassification, GliomaStageModel
|
12 |
from utils import get_precautions_from_gemini
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
os.makedirs(cache_dir, exist_ok=True)
|
17 |
-
|
18 |
-
app = FastAPI(title="Brain Tumor Detection API")
|
19 |
|
|
|
20 |
app.add_middleware(
|
21 |
CORSMiddleware,
|
22 |
allow_origins=["*"],
|
@@ -25,83 +26,47 @@ app.add_middleware(
|
|
25 |
allow_headers=["*"],
|
26 |
)
|
27 |
|
28 |
-
# ✅ Load
|
29 |
-
btd_model_path = hf_hub_download(
|
30 |
-
|
31 |
-
filename="BTD_model.pth",
|
32 |
-
cache_dir=cache_dir
|
33 |
-
)
|
34 |
-
tumor_model = TumorClassification()
|
35 |
-
tumor_model.load_state_dict(torch.load(btd_model_path, map_location="cpu"))
|
36 |
-
tumor_model.eval()
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
repo_id="Codewithsalty/brain-tumor-models",
|
41 |
-
filename="glioma_stages.pth",
|
42 |
-
cache_dir=cache_dir
|
43 |
-
)
|
44 |
-
glioma_model = GliomaStageModel()
|
45 |
-
glioma_model.load_state_dict(torch.load(glioma_model_path, map_location="cpu"))
|
46 |
-
glioma_model.eval()
|
47 |
|
|
|
48 |
transform = transforms.Compose([
|
49 |
-
transforms.Grayscale(),
|
50 |
transforms.Resize((224, 224)),
|
51 |
-
transforms.ToTensor()
|
52 |
-
transforms.Normalize(mean=[0.5], std=[0.5]),
|
53 |
])
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
@app.
|
62 |
-
|
63 |
-
|
64 |
-
img = Image.open(io.BytesIO(img_bytes)).convert("L")
|
65 |
-
x = transform(img).unsqueeze(0)
|
66 |
-
|
67 |
-
with torch.no_grad():
|
68 |
-
out = tumor_model(x)
|
69 |
-
idx = torch.argmax(out, dim=1).item()
|
70 |
-
tumor_type = labels[idx]
|
71 |
-
|
72 |
-
if tumor_type == "glioma":
|
73 |
-
return {"tumor_type": tumor_type, "next": "submit_mutation_data"}
|
74 |
-
else:
|
75 |
-
precautions = get_precautions_from_gemini(tumor_type)
|
76 |
-
return {"tumor_type": tumor_type, "precaution": precautions}
|
77 |
-
|
78 |
-
class MutationInput(BaseModel):
|
79 |
-
gender: str
|
80 |
-
age: float
|
81 |
-
idh1: int
|
82 |
-
tp53: int
|
83 |
-
atrx: int
|
84 |
-
pten: int
|
85 |
-
egfr: int
|
86 |
-
cic: int
|
87 |
-
pik3ca: int
|
88 |
-
|
89 |
-
@app.post("/predict-glioma-stage")
|
90 |
-
async def predict_glioma_stage(data: MutationInput):
|
91 |
-
gender_val = 0 if data.gender.lower() == 'm' else 1
|
92 |
-
features = [
|
93 |
-
gender_val, data.age, data.idh1, data.tp53, data.atrx,
|
94 |
-
data.pten, data.egfr, data.cic, data.pik3ca
|
95 |
-
]
|
96 |
-
x = torch.tensor(features).float().unsqueeze(0)
|
97 |
-
|
98 |
-
with torch.no_grad():
|
99 |
-
out = glioma_model(x)
|
100 |
-
idx = torch.argmax(out, dim=1).item()
|
101 |
-
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
102 |
-
return {"glioma_stage": stages[idx]}
|
103 |
-
|
104 |
-
# Only used when running locally
|
105 |
-
if __name__ == "__main__":
|
106 |
-
import uvicorn
|
107 |
-
uvicorn.run("newapi:app", host="0.0.0.0", port=10000)
|
|
|
6 |
from PIL import Image
|
7 |
import io
|
8 |
import os
|
|
|
9 |
|
10 |
+
# ✅ Set Hugging Face model cache directory to a writable path
|
11 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
12 |
+
|
13 |
+
from huggingface_hub import hf_hub_download
|
14 |
from models.TumorModel import TumorClassification, GliomaStageModel
|
15 |
from utils import get_precautions_from_gemini
|
16 |
|
17 |
+
# Define your app
|
18 |
+
app = FastAPI()
|
|
|
|
|
|
|
19 |
|
20 |
+
# ✅ Enable CORS
|
21 |
app.add_middleware(
|
22 |
CORSMiddleware,
|
23 |
allow_origins=["*"],
|
|
|
26 |
allow_headers=["*"],
|
27 |
)
|
28 |
|
29 |
+
# ✅ Load your models from the Hugging Face Hub
|
30 |
+
btd_model_path = hf_hub_download(repo_id="Codewithsalty/brain-tumor-detection", filename="brain_tumor_model.pt")
|
31 |
+
glioma_model_path = hf_hub_download(repo_id="Codewithsalty/brain-tumor-detection", filename="glioma_stage_model.pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
btd_model = TumorClassification(model_path=btd_model_path)
|
34 |
+
glioma_model = GliomaStageModel(model_path=glioma_model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# ✅ Image preprocessing
|
37 |
transform = transforms.Compose([
|
|
|
38 |
transforms.Resize((224, 224)),
|
39 |
+
transforms.ToTensor()
|
|
|
40 |
])
|
41 |
|
42 |
+
class DiagnosisResponse(BaseModel):
|
43 |
+
tumor: str
|
44 |
+
stage: str
|
45 |
+
precautions: list
|
46 |
+
|
47 |
+
@app.post("/predict", response_model=DiagnosisResponse)
|
48 |
+
async def predict(file: UploadFile = File(...)):
|
49 |
+
contents = await file.read()
|
50 |
+
image = Image.open(io.BytesIO(contents)).convert("RGB")
|
51 |
+
image_tensor = transform(image).unsqueeze(0)
|
52 |
+
|
53 |
+
tumor_result = btd_model.predict(image_tensor)
|
54 |
+
if tumor_result == "No Tumor":
|
55 |
+
return DiagnosisResponse(
|
56 |
+
tumor="No Tumor Detected",
|
57 |
+
stage="N/A",
|
58 |
+
precautions=[]
|
59 |
+
)
|
60 |
+
|
61 |
+
stage_result = glioma_model.predict(image_tensor)
|
62 |
+
precautions = get_precautions_from_gemini(tumor_result, stage_result)
|
63 |
+
|
64 |
+
return DiagnosisResponse(
|
65 |
+
tumor=tumor_result,
|
66 |
+
stage=stage_result,
|
67 |
+
precautions=precautions
|
68 |
+
)
|
69 |
|
70 |
+
@app.get("/")
|
71 |
+
def root():
|
72 |
+
return {"message": "Brain Tumor API is running."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|