Spaces:
Runtime error
Runtime error
Update newapi.py
Browse files
newapi.py
CHANGED
@@ -11,8 +11,11 @@ from huggingface_hub import hf_hub_download
|
|
11 |
from models.TumorModel import TumorClassification, GliomaStageModel
|
12 |
from utils import get_precautions_from_gemini
|
13 |
|
14 |
-
#
|
15 |
-
cache_dir =
|
|
|
|
|
|
|
16 |
|
17 |
# Initialize FastAPI app
|
18 |
app = FastAPI(title="Brain Tumor Detection API")
|
@@ -26,7 +29,7 @@ app.add_middleware(
|
|
26 |
allow_headers=["*"],
|
27 |
)
|
28 |
|
29 |
-
# Load Tumor Classification Model
|
30 |
btd_model_path = hf_hub_download(
|
31 |
repo_id="Codewithsalty/brain-tumor-models",
|
32 |
filename="BTD_model.pth",
|
@@ -36,7 +39,7 @@ tumor_model = TumorClassification()
|
|
36 |
tumor_model.load_state_dict(torch.load(btd_model_path, map_location="cpu"))
|
37 |
tumor_model.eval()
|
38 |
|
39 |
-
# Load Glioma Stage Prediction Model
|
40 |
glioma_model_path = hf_hub_download(
|
41 |
repo_id="Codewithsalty/brain-tumor-models",
|
42 |
filename="glioma_stages.pth",
|
@@ -54,7 +57,7 @@ transform = transforms.Compose([
|
|
54 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
55 |
])
|
56 |
|
57 |
-
# Health check
|
58 |
@app.get("/")
|
59 |
async def root():
|
60 |
return {"message": "Brain Tumor Detection API is running."}
|
@@ -62,11 +65,11 @@ async def root():
|
|
62 |
# Tumor type labels
|
63 |
labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
64 |
|
65 |
-
# Predict tumor type from
|
66 |
@app.post("/predict-image")
|
67 |
async def predict_image(file: UploadFile = File(...)):
|
68 |
img_bytes = await file.read()
|
69 |
-
img = Image.open(io.BytesIO(img_bytes)).convert("L")
|
70 |
x = transform(img).unsqueeze(0)
|
71 |
|
72 |
with torch.no_grad():
|
@@ -80,7 +83,7 @@ async def predict_image(file: UploadFile = File(...)):
|
|
80 |
precautions = get_precautions_from_gemini(tumor_type)
|
81 |
return {"tumor_type": tumor_type, "precaution": precautions}
|
82 |
|
83 |
-
#
|
84 |
class MutationInput(BaseModel):
|
85 |
gender: str
|
86 |
age: float
|
@@ -92,7 +95,7 @@ class MutationInput(BaseModel):
|
|
92 |
cic: int
|
93 |
pik3ca: int
|
94 |
|
95 |
-
# Predict glioma stage
|
96 |
@app.post("/predict-glioma-stage")
|
97 |
async def predict_glioma_stage(data: MutationInput):
|
98 |
gender_val = 0 if data.gender.lower() == 'm' else 1
|
@@ -108,6 +111,7 @@ async def predict_glioma_stage(data: MutationInput):
|
|
108 |
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
109 |
return {"glioma_stage": stages[idx]}
|
110 |
|
|
|
111 |
if __name__ == "__main__":
|
112 |
import uvicorn
|
113 |
uvicorn.run("newapi:app", host="0.0.0.0", port=10000)
|
|
|
11 |
from models.TumorModel import TumorClassification, GliomaStageModel
|
12 |
from utils import get_precautions_from_gemini
|
13 |
|
14 |
+
# ✅ Writable cache directory inside project
|
15 |
+
cache_dir = "./hf_cache"
|
16 |
+
|
17 |
+
# ✅ Create the directory if it doesn't exist
|
18 |
+
os.makedirs(cache_dir, exist_ok=True)
|
19 |
|
20 |
# Initialize FastAPI app
|
21 |
app = FastAPI(title="Brain Tumor Detection API")
|
|
|
29 |
allow_headers=["*"],
|
30 |
)
|
31 |
|
32 |
+
# Load Tumor Classification Model
|
33 |
btd_model_path = hf_hub_download(
|
34 |
repo_id="Codewithsalty/brain-tumor-models",
|
35 |
filename="BTD_model.pth",
|
|
|
39 |
tumor_model.load_state_dict(torch.load(btd_model_path, map_location="cpu"))
|
40 |
tumor_model.eval()
|
41 |
|
42 |
+
# Load Glioma Stage Prediction Model
|
43 |
glioma_model_path = hf_hub_download(
|
44 |
repo_id="Codewithsalty/brain-tumor-models",
|
45 |
filename="glioma_stages.pth",
|
|
|
57 |
transforms.Normalize(mean=[0.5], std=[0.5]),
|
58 |
])
|
59 |
|
60 |
+
# Health check
|
61 |
@app.get("/")
|
62 |
async def root():
|
63 |
return {"message": "Brain Tumor Detection API is running."}
|
|
|
65 |
# Tumor type labels
|
66 |
labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
67 |
|
68 |
+
# Predict tumor type from image
|
69 |
@app.post("/predict-image")
|
70 |
async def predict_image(file: UploadFile = File(...)):
|
71 |
img_bytes = await file.read()
|
72 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("L")
|
73 |
x = transform(img).unsqueeze(0)
|
74 |
|
75 |
with torch.no_grad():
|
|
|
83 |
precautions = get_precautions_from_gemini(tumor_type)
|
84 |
return {"tumor_type": tumor_type, "precaution": precautions}
|
85 |
|
86 |
+
# Mutation input model
|
87 |
class MutationInput(BaseModel):
|
88 |
gender: str
|
89 |
age: float
|
|
|
95 |
cic: int
|
96 |
pik3ca: int
|
97 |
|
98 |
+
# Predict glioma stage
|
99 |
@app.post("/predict-glioma-stage")
|
100 |
async def predict_glioma_stage(data: MutationInput):
|
101 |
gender_val = 0 if data.gender.lower() == 'm' else 1
|
|
|
111 |
stages = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
112 |
return {"glioma_stage": stages[idx]}
|
113 |
|
114 |
+
# Run locally (ignored on Spaces, used only for dev/testing)
|
115 |
if __name__ == "__main__":
|
116 |
import uvicorn
|
117 |
uvicorn.run("newapi:app", host="0.0.0.0", port=10000)
|