Codewithsalty commited on
Commit
b81c13c
·
verified ·
1 Parent(s): af39627

Update newapi.py

Browse files
Files changed (1) hide show
  1. newapi.py +16 -12
newapi.py CHANGED
@@ -28,7 +28,7 @@ app.add_middleware(
28
  transform = transforms.Compose([
29
  transforms.Resize((224, 224)),
30
  transforms.ToTensor(),
31
- transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
32
  ])
33
 
34
  # Define your model directly inside this file (to avoid import errors)
@@ -37,19 +37,23 @@ import torch.nn as nn
37
  class BrainTumorModel(nn.Module):
38
  def __init__(self):
39
  super(BrainTumorModel, self).__init__()
40
- self.model = nn.Sequential(
41
- nn.Conv2d(3, 16, kernel_size=3),
42
- nn.ReLU(),
43
- nn.MaxPool2d(2),
44
- nn.Conv2d(16, 32, kernel_size=3),
45
- nn.ReLU(),
46
- nn.MaxPool2d(2),
47
- nn.Flatten(),
48
- nn.Linear(32 * 54 * 54, 2),
49
- )
50
 
51
  def forward(self, x):
52
- return self.model(x)
 
 
 
 
 
 
 
53
 
54
  # Load model
55
  model_path = "BTD_model.pth"
 
28
  transform = transforms.Compose([
29
  transforms.Resize((224, 224)),
30
  transforms.ToTensor(),
31
+ transforms.Normalize(mean=[0.5], std=[0.5]),
32
  ])
33
 
34
  # Define your model directly inside this file (to avoid import errors)
 
37
  class BrainTumorModel(nn.Module):
38
  def __init__(self):
39
  super(BrainTumorModel, self).__init__()
40
+ self.con1d = nn.Conv2d(3, 32, kernel_size=3)
41
+ self.con2d = nn.Conv2d(32, 64, kernel_size=3)
42
+ self.con3d = nn.Conv2d(64, 128, kernel_size=3)
43
+ self.pool = nn.MaxPool2d(2)
44
+ self.fc1 = nn.Linear(128 * 25 * 25, 256)
45
+ self.fc2 = nn.Linear(256, 128)
46
+ self.output = nn.Linear(128, 2)
 
 
 
47
 
48
  def forward(self, x):
49
+ x = self.pool(torch.relu(self.con1d(x)))
50
+ x = self.pool(torch.relu(self.con2d(x)))
51
+ x = self.pool(torch.relu(self.con3d(x)))
52
+ x = x.view(-1, 128 * 25 * 25)
53
+ x = torch.relu(self.fc1(x))
54
+ x = torch.relu(self.fc2(x))
55
+ x = self.output(x)
56
+ return x
57
 
58
  # Load model
59
  model_path = "BTD_model.pth"