Spaces:
Runtime error
Runtime error
Update newapi.py
Browse files
newapi.py
CHANGED
@@ -2,99 +2,89 @@ import os
|
|
2 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.responses import JSONResponse
|
|
|
5 |
from PIL import Image
|
6 |
import torch
|
7 |
import torchvision.transforms as transforms
|
8 |
|
9 |
from utils import BrainTumorModel, GliomaStageModel, get_precautions_from_gemini
|
10 |
|
11 |
-
#
|
12 |
-
MODEL_DIR
|
13 |
-
BTD_FILENAME
|
14 |
GLIO_FILENAME = "glioma_stages.pth"
|
15 |
|
16 |
-
#
|
17 |
app = FastAPI(title="Brain Tumor Detection API")
|
18 |
-
|
19 |
app.add_middleware(
|
20 |
CORSMiddleware,
|
21 |
-
allow_origins=["*"],
|
22 |
allow_methods=["*"],
|
23 |
allow_headers=["*"],
|
24 |
)
|
25 |
|
26 |
-
# ---- Device & transforms ----
|
27 |
DEVICE = torch.device("cpu")
|
28 |
transform = transforms.Compose([
|
29 |
transforms.Resize((224, 224)),
|
30 |
transforms.ToTensor(),
|
31 |
-
transforms.Normalize(
|
32 |
])
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
path = os.path.join(MODEL_DIR, filename)
|
37 |
if not os.path.isfile(path):
|
38 |
raise FileNotFoundError(f"Model file not found: {path}")
|
39 |
-
|
40 |
-
|
41 |
-
return
|
42 |
|
43 |
try:
|
44 |
tumor_model = load_model(BrainTumorModel, BTD_FILENAME)
|
45 |
glioma_model = load_model(GliomaStageModel, GLIO_FILENAME)
|
46 |
except Exception as e:
|
47 |
-
|
48 |
-
print(f"❌ Error loading model: {e}")
|
49 |
-
|
50 |
-
# ---- Routes ----
|
51 |
|
52 |
@app.get("/")
|
53 |
async def health():
|
54 |
-
return {"status": "ok", "message": "
|
55 |
|
56 |
@app.post("/predict-image/")
|
57 |
async def predict_image(file: UploadFile = File(...)):
|
58 |
-
if file.content_type.
|
59 |
-
raise HTTPException(400, "Upload an image
|
60 |
img = Image.open(file.file).convert("RGB")
|
61 |
-
|
62 |
with torch.no_grad():
|
63 |
-
out = tumor_model(
|
64 |
-
idx =
|
65 |
-
|
66 |
-
labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
67 |
tumor_type = labels[idx]
|
68 |
-
|
69 |
if tumor_type == "glioma":
|
70 |
return {"tumor_type": tumor_type, "next": "submit_mutation_data"}
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
}
|
76 |
|
77 |
class MutationInput(BaseModel):
|
78 |
gender: str
|
79 |
-
age:
|
80 |
-
idh1:
|
81 |
-
tp53:
|
82 |
-
atrx:
|
83 |
-
pten:
|
84 |
-
egfr:
|
85 |
-
cic:
|
86 |
pik3ca: int
|
87 |
|
88 |
@app.post("/predict-glioma-stage/")
|
89 |
async def predict_glioma_stage(data: MutationInput):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
with torch.no_grad():
|
96 |
-
out = glioma_model(
|
97 |
-
idx =
|
98 |
-
|
99 |
-
stages = ['Stage 1','Stage 2','Stage 3','Stage 4']
|
100 |
return {"glioma_stage": stages[idx]}
|
|
|
2 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from fastapi.responses import JSONResponse
|
5 |
+
from pydantic import BaseModel
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
import torchvision.transforms as transforms
|
9 |
|
10 |
from utils import BrainTumorModel, GliomaStageModel, get_precautions_from_gemini
|
11 |
|
12 |
+
# ——— Constants ———
|
13 |
+
MODEL_DIR = "models"
|
14 |
+
BTD_FILENAME = "BTD_model.pth"
|
15 |
GLIO_FILENAME = "glioma_stages.pth"
|
16 |
|
17 |
+
# ——— App setup ———
|
18 |
app = FastAPI(title="Brain Tumor Detection API")
|
|
|
19 |
app.add_middleware(
|
20 |
CORSMiddleware,
|
21 |
+
allow_origins=["*"],
|
22 |
allow_methods=["*"],
|
23 |
allow_headers=["*"],
|
24 |
)
|
25 |
|
|
|
26 |
DEVICE = torch.device("cpu")
|
27 |
transform = transforms.Compose([
|
28 |
transforms.Resize((224, 224)),
|
29 |
transforms.ToTensor(),
|
30 |
+
transforms.Normalize([0.5]*3, [0.5]*3),
|
31 |
])
|
32 |
|
33 |
+
def load_model(cls, fname):
|
34 |
+
path = os.path.join(MODEL_DIR, fname)
|
|
|
35 |
if not os.path.isfile(path):
|
36 |
raise FileNotFoundError(f"Model file not found: {path}")
|
37 |
+
m = cls().to(DEVICE)
|
38 |
+
m.load_state_dict(torch.load(path, map_location=DEVICE))
|
39 |
+
return m.eval()
|
40 |
|
41 |
try:
|
42 |
tumor_model = load_model(BrainTumorModel, BTD_FILENAME)
|
43 |
glioma_model = load_model(GliomaStageModel, GLIO_FILENAME)
|
44 |
except Exception as e:
|
45 |
+
print("❌ Error loading model:", e)
|
|
|
|
|
|
|
46 |
|
47 |
@app.get("/")
|
48 |
async def health():
|
49 |
+
return {"status": "ok", "message": "API is up"}
|
50 |
|
51 |
@app.post("/predict-image/")
|
52 |
async def predict_image(file: UploadFile = File(...)):
|
53 |
+
if not file.content_type.startswith("image/"):
|
54 |
+
raise HTTPException(400, "Upload an image")
|
55 |
img = Image.open(file.file).convert("RGB")
|
56 |
+
t = transform(img).unsqueeze(0).to(DEVICE)
|
57 |
with torch.no_grad():
|
58 |
+
out = tumor_model(t)
|
59 |
+
idx = int(out.argmax(1))
|
60 |
+
labels = ["glioma","meningioma","notumor","pituitary"]
|
|
|
61 |
tumor_type = labels[idx]
|
|
|
62 |
if tumor_type == "glioma":
|
63 |
return {"tumor_type": tumor_type, "next": "submit_mutation_data"}
|
64 |
+
return {
|
65 |
+
"tumor_type": tumor_type,
|
66 |
+
"precaution": get_precautions_from_gemini(tumor_type)
|
67 |
+
}
|
|
|
68 |
|
69 |
class MutationInput(BaseModel):
|
70 |
gender: str
|
71 |
+
age: float
|
72 |
+
idh1: int
|
73 |
+
tp53: int
|
74 |
+
atrx: int
|
75 |
+
pten: int
|
76 |
+
egfr: int
|
77 |
+
cic: int
|
78 |
pik3ca: int
|
79 |
|
80 |
@app.post("/predict-glioma-stage/")
|
81 |
async def predict_glioma_stage(data: MutationInput):
|
82 |
+
gen = 0 if data.gender.lower().startswith("m") else 1
|
83 |
+
feats = [gen, data.age, data.idh1, data.tp53,
|
84 |
+
data.atrx, data.pten, data.egfr, data.cic, data.pik3ca]
|
85 |
+
t = torch.tensor(feats, dtype=torch.float32).unsqueeze(0).to(DEVICE)
|
|
|
86 |
with torch.no_grad():
|
87 |
+
out = glioma_model(t)
|
88 |
+
idx = int(out.argmax(1))
|
89 |
+
stages = ["Stage 1","Stage 2","Stage 3","Stage 4"]
|
|
|
90 |
return {"glioma_stage": stages[idx]}
|