import torch import torch.nn as nn # ================================ # 🧠 MODEL CLASSES # ================================ class BrainTumorModel(nn.Module): def __init__(self): super(BrainTumorModel, self).__init__() self.model = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(32 * 56 * 56, 128), nn.ReLU(), nn.Linear(128, 4) # 4 tumor classes ) def forward(self, x): return self.model(x) class GliomaStageModel(nn.Module): def __init__(self): super(GliomaStageModel, self).__init__() self.model = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(32 * 56 * 56, 128), nn.ReLU(), nn.Linear(128, 4) # 4 glioma stages ) def forward(self, x): return self.model(x) # ================================ # 💡 PRECAUTIONS # ================================ def get_precautions_from_gemini(tumor_type): precaution_db = { "meningioma": "Avoid radiation exposure and get regular check-ups.", "pituitary": "Monitor hormonal levels and follow medication strictly.", "notumor": "Stay healthy and get annual MRI scans if symptoms appear.", "glioma": "Maintain a healthy lifestyle and follow up with neuro-oncologist." } return precaution_db.get(tumor_type.lower(), "No specific precautions found.")