Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,77 +1,81 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# β
Fix permission issues on Hugging Face Spaces
|
4 |
+
os.environ["STREAMLIT_HOME"] = "/home/user/app"
|
5 |
+
os.environ["XDG_CONFIG_HOME"] = "/home/user/app"
|
6 |
+
|
7 |
+
import streamlit as st
|
8 |
+
import torch
|
9 |
+
from torchvision import transforms
|
10 |
+
from PIL import Image
|
11 |
+
from TumorModel import TumorClassification, GliomaStageModel
|
12 |
+
|
13 |
+
# π― Load classification model
|
14 |
+
tumor_model = TumorClassification()
|
15 |
+
tumor_model.load_state_dict(torch.load("BTD_model.pth", map_location=torch.device("cpu")))
|
16 |
+
tumor_model.eval()
|
17 |
+
|
18 |
+
# π― Load glioma stage model
|
19 |
+
glioma_model = GliomaStageModel()
|
20 |
+
glioma_model.load_state_dict(torch.load("glioma_stages.pth", map_location=torch.device("cpu")))
|
21 |
+
glioma_model.eval()
|
22 |
+
|
23 |
+
# π Class labels
|
24 |
+
tumor_labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
25 |
+
stage_labels = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4']
|
26 |
+
|
27 |
+
# π Image Transform
|
28 |
+
transform = transforms.Compose([
|
29 |
+
transforms.Grayscale(),
|
30 |
+
transforms.Resize((224, 224)),
|
31 |
+
transforms.ToTensor(),
|
32 |
+
transforms.Normalize(mean=[0.5], std=[0.5])
|
33 |
+
])
|
34 |
+
|
35 |
+
# π§ Tumor prediction
|
36 |
+
def predict_tumor(image: Image.Image) -> str:
|
37 |
+
image = transform(image).unsqueeze(0)
|
38 |
+
with torch.no_grad():
|
39 |
+
output = tumor_model(image)
|
40 |
+
pred = torch.argmax(output, dim=1).item()
|
41 |
+
return tumor_labels[pred]
|
42 |
+
|
43 |
+
# 𧬠Glioma stage prediction
|
44 |
+
def predict_stage(gender, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca):
|
45 |
+
gender_val = 0 if gender == "Male" else 1
|
46 |
+
features = [gender_val, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca]
|
47 |
+
x = torch.tensor(features).float().unsqueeze(0)
|
48 |
+
with torch.no_grad():
|
49 |
+
out = glioma_model(x)
|
50 |
+
pred = torch.argmax(out, dim=1).item()
|
51 |
+
return stage_labels[pred]
|
52 |
+
|
53 |
+
# π¨ Streamlit UI
|
54 |
+
st.title("π§ Brain Tumor Detection & Glioma Stage Predictor")
|
55 |
+
|
56 |
+
tab1, tab2 = st.tabs(["Tumor Type Detector", "Glioma Stage Predictor"])
|
57 |
+
|
58 |
+
with tab1:
|
59 |
+
st.header("πΌοΈ Upload an MRI Image")
|
60 |
+
uploaded_file = st.file_uploader("Choose an MRI image", type=["jpg", "jpeg", "png"])
|
61 |
+
if uploaded_file:
|
62 |
+
image = Image.open(uploaded_file).convert("RGB")
|
63 |
+
st.image(image, caption="Uploaded MRI", use_column_width=True)
|
64 |
+
prediction = predict_tumor(image)
|
65 |
+
st.success(f"π§ Predicted Tumor Type: **{prediction.upper()}**")
|
66 |
+
|
67 |
+
with tab2:
|
68 |
+
st.header("𧬠Patient Genetic and Demographic Information")
|
69 |
+
gender = st.radio("Gender", ["Male", "Female"])
|
70 |
+
age = st.slider("Age", 1, 100, 30)
|
71 |
+
idh1 = st.slider("IDH1 Mutation", 0, 1, 0)
|
72 |
+
tp53 = st.slider("TP53 Mutation", 0, 1, 0)
|
73 |
+
atrx = st.slider("ATRX Mutation", 0, 1, 0)
|
74 |
+
pten = st.slider("PTEN Mutation", 0, 1, 0)
|
75 |
+
egfr = st.slider("EGFR Mutation", 0, 1, 0)
|
76 |
+
cic = st.slider("CIC Mutation", 0, 1, 0)
|
77 |
+
pik3ca = st.slider("PIK3CA Mutation", 0, 1, 0)
|
78 |
+
|
79 |
+
if st.button("Predict Glioma Stage"):
|
80 |
+
stage = predict_stage(gender, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca)
|
81 |
+
st.success(f"π Predicted Glioma Stage: **{stage}**")
|