Spaces:
Runtime error
Runtime error
Update TumorModel.py
Browse files- TumorModel.py +28 -15
TumorModel.py
CHANGED
@@ -2,21 +2,34 @@ import torch.nn as nn
|
|
2 |
|
3 |
class TumorClassification(nn.Module):
|
4 |
def __init__(self):
|
5 |
-
super().__init__()
|
6 |
-
self.
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def forward(self, x):
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
|
22 |
class GliomaStageModel(nn.Module):
|
@@ -28,7 +41,7 @@ class GliomaStageModel(nn.Module):
|
|
28 |
self.relu2 = nn.ReLU()
|
29 |
self.fc3 = nn.Linear(50, 30)
|
30 |
self.relu3 = nn.ReLU()
|
31 |
-
self.out = nn.Linear(30, 2)
|
32 |
|
33 |
def forward(self, x):
|
34 |
x = self.relu1(self.fc1(x))
|
|
|
2 |
|
3 |
class TumorClassification(nn.Module):
|
4 |
def __init__(self):
|
5 |
+
super(TumorClassification, self).__init__()
|
6 |
+
self.con1d = nn.Conv2d(1, 32, kernel_size=3, padding=1)
|
7 |
+
self.relu1 = nn.ReLU()
|
8 |
+
self.pool1 = nn.MaxPool2d(2)
|
9 |
+
|
10 |
+
self.con2d = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
11 |
+
self.relu2 = nn.ReLU()
|
12 |
+
self.pool2 = nn.MaxPool2d(2)
|
13 |
+
|
14 |
+
self.con3d = nn.Conv2d(64, 128, kernel_size=3, padding=1)
|
15 |
+
self.relu3 = nn.ReLU()
|
16 |
+
self.pool3 = nn.MaxPool2d(2)
|
17 |
+
|
18 |
+
self.flatten = nn.Flatten()
|
19 |
+
self.fc1 = nn.Linear(128 * 28 * 28, 512)
|
20 |
+
self.relu4 = nn.ReLU()
|
21 |
+
self.fc2 = nn.Linear(512, 256)
|
22 |
+
self.relu5 = nn.ReLU()
|
23 |
+
self.output = nn.Linear(256, 4)
|
24 |
+
|
25 |
def forward(self, x):
|
26 |
+
x = self.pool1(self.relu1(self.con1d(x)))
|
27 |
+
x = self.pool2(self.relu2(self.con2d(x)))
|
28 |
+
x = self.pool3(self.relu3(self.con3d(x)))
|
29 |
+
x = self.flatten(x)
|
30 |
+
x = self.relu4(self.fc1(x))
|
31 |
+
x = self.relu5(self.fc2(x))
|
32 |
+
return self.output(x)
|
33 |
|
34 |
|
35 |
class GliomaStageModel(nn.Module):
|
|
|
41 |
self.relu2 = nn.ReLU()
|
42 |
self.fc3 = nn.Linear(50, 30)
|
43 |
self.relu3 = nn.ReLU()
|
44 |
+
self.out = nn.Linear(30, 2)
|
45 |
|
46 |
def forward(self, x):
|
47 |
x = self.relu1(self.fc1(x))
|