Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,37 +4,47 @@ from PIL import Image
|
|
4 |
from torchvision import transforms
|
5 |
from TumorModel import TumorClassification, GliomaStageModel
|
6 |
|
7 |
-
#
|
8 |
tumor_model = TumorClassification()
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
tumor_model.eval()
|
11 |
|
12 |
-
#
|
13 |
glioma_model = GliomaStageModel()
|
14 |
-
glioma_model.load_state_dict(torch.load("glioma_stages.pth", map_location=
|
15 |
glioma_model.eval()
|
16 |
|
17 |
-
#
|
18 |
tumor_labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
19 |
-
stage_labels = ['Stage 1', 'Stage 2'
|
20 |
|
21 |
-
# β
Transform (resize to 208x208 to match training)
|
22 |
transform = transforms.Compose([
|
23 |
transforms.Grayscale(),
|
24 |
-
transforms.Resize((208, 208)),
|
25 |
transforms.ToTensor(),
|
26 |
transforms.Normalize(mean=[0.5], std=[0.5])
|
27 |
])
|
28 |
|
29 |
-
#
|
|
|
30 |
def predict_tumor(image):
|
31 |
-
|
32 |
with torch.no_grad():
|
33 |
-
out = tumor_model(
|
34 |
pred = torch.argmax(out, dim=1).item()
|
35 |
-
|
36 |
|
37 |
-
# β
Glioma Stage Prediction Function
|
38 |
def predict_stage(gender, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca):
|
39 |
gender_val = 0 if gender == "Male" else 1
|
40 |
features = [gender_val, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca]
|
@@ -42,41 +52,33 @@ def predict_stage(gender, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca):
|
|
42 |
with torch.no_grad():
|
43 |
out = glioma_model(x)
|
44 |
pred = torch.argmax(out, dim=1).item()
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
# β
Tumor Detection Tab
|
48 |
tumor_tab = gr.Interface(
|
49 |
fn=predict_tumor,
|
50 |
inputs=gr.Image(type="pil"),
|
51 |
outputs=gr.Label(),
|
52 |
-
title="
|
53 |
-
description="Upload an MRI image to classify tumor type: glioma, meningioma, notumor, or pituitary."
|
54 |
)
|
55 |
|
56 |
-
# β
Glioma Stage Prediction Tab
|
57 |
stage_tab = gr.Interface(
|
58 |
fn=predict_stage,
|
59 |
inputs=[
|
60 |
gr.Radio(["Male", "Female"], label="Gender"),
|
61 |
gr.Slider(0, 100, label="Age"),
|
62 |
-
gr.Slider(0, 1, step=1, label="IDH1
|
63 |
-
gr.Slider(0, 1, step=1, label="TP53
|
64 |
-
gr.Slider(0, 1, step=1, label="ATRX
|
65 |
-
gr.Slider(0, 1, step=1, label="PTEN
|
66 |
-
gr.Slider(0, 1, step=1, label="EGFR
|
67 |
-
gr.Slider(0, 1, step=1, label="CIC
|
68 |
-
gr.Slider(0, 1, step=1, label="PIK3CA
|
69 |
],
|
70 |
outputs=gr.Label(),
|
71 |
-
title="
|
72 |
-
description="Enter mutation and demographic data to classify glioma stage."
|
73 |
-
)
|
74 |
-
|
75 |
-
# β
Combine into a tabbed interface
|
76 |
-
demo = gr.TabbedInterface(
|
77 |
-
[tumor_tab, stage_tab],
|
78 |
-
tab_names=["Tumor Detector", "Glioma Stage Predictor"]
|
79 |
)
|
80 |
|
81 |
-
|
82 |
demo.launch()
|
|
|
4 |
from torchvision import transforms
|
5 |
from TumorModel import TumorClassification, GliomaStageModel
|
6 |
|
7 |
+
# βββ Load Tumor Classification Model βββββββββββββββββββββββββββββββββββββββββββ
|
8 |
tumor_model = TumorClassification()
|
9 |
+
sd = torch.load("BTD_model.pth", map_location="cpu")
|
10 |
+
renamed_sd = {}
|
11 |
+
for k, v in sd.items():
|
12 |
+
new_key = (k
|
13 |
+
.replace("con1d.", "model.0.")
|
14 |
+
.replace("con2d.", "model.3.")
|
15 |
+
.replace("con3d.", "model.6.")
|
16 |
+
.replace("fc1.", "model.8.")
|
17 |
+
.replace("fc2.", "model.10.")
|
18 |
+
.replace("output.", "model.12."))
|
19 |
+
renamed_sd[new_key] = v
|
20 |
+
tumor_model.load_state_dict(renamed_sd)
|
21 |
tumor_model.eval()
|
22 |
|
23 |
+
# βββ Load Glioma Stage Model βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
24 |
glioma_model = GliomaStageModel()
|
25 |
+
glioma_model.load_state_dict(torch.load("glioma_stages.pth", map_location="cpu"))
|
26 |
glioma_model.eval()
|
27 |
|
28 |
+
# βββ Labels and Image Transform βββββββββββββββββββββββββββββββββββββββββββββββ
|
29 |
tumor_labels = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
30 |
+
stage_labels = ['Stage 1', 'Stage 2'] # Or adjust to match your second model
|
31 |
|
|
|
32 |
transform = transforms.Compose([
|
33 |
transforms.Grayscale(),
|
34 |
+
transforms.Resize((208, 208)),
|
35 |
transforms.ToTensor(),
|
36 |
transforms.Normalize(mean=[0.5], std=[0.5])
|
37 |
])
|
38 |
|
39 |
+
# βββ Gradio Prediction Functions βββββββββββββββββββββββββββββββββββββββββββββββ
|
40 |
+
|
41 |
def predict_tumor(image):
|
42 |
+
tensor = transform(image).unsqueeze(0)
|
43 |
with torch.no_grad():
|
44 |
+
out = tumor_model(tensor)
|
45 |
pred = torch.argmax(out, dim=1).item()
|
46 |
+
return tumor_labels[pred]
|
47 |
|
|
|
48 |
def predict_stage(gender, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca):
|
49 |
gender_val = 0 if gender == "Male" else 1
|
50 |
features = [gender_val, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca]
|
|
|
52 |
with torch.no_grad():
|
53 |
out = glioma_model(x)
|
54 |
pred = torch.argmax(out, dim=1).item()
|
55 |
+
return stage_labels[pred]
|
56 |
+
|
57 |
+
# βββ Gradio UI ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
58 |
|
|
|
59 |
tumor_tab = gr.Interface(
|
60 |
fn=predict_tumor,
|
61 |
inputs=gr.Image(type="pil"),
|
62 |
outputs=gr.Label(),
|
63 |
+
title="Brain Tumor Detector"
|
|
|
64 |
)
|
65 |
|
|
|
66 |
stage_tab = gr.Interface(
|
67 |
fn=predict_stage,
|
68 |
inputs=[
|
69 |
gr.Radio(["Male", "Female"], label="Gender"),
|
70 |
gr.Slider(0, 100, label="Age"),
|
71 |
+
gr.Slider(0, 1, step=1, label="IDH1"),
|
72 |
+
gr.Slider(0, 1, step=1, label="TP53"),
|
73 |
+
gr.Slider(0, 1, step=1, label="ATRX"),
|
74 |
+
gr.Slider(0, 1, step=1, label="PTEN"),
|
75 |
+
gr.Slider(0, 1, step=1, label="EGFR"),
|
76 |
+
gr.Slider(0, 1, step=1, label="CIC"),
|
77 |
+
gr.Slider(0, 1, step=1, label="PIK3CA")
|
78 |
],
|
79 |
outputs=gr.Label(),
|
80 |
+
title="Glioma Stage Predictor"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
)
|
82 |
|
83 |
+
demo = gr.TabbedInterface([tumor_tab, stage_tab], tab_names=["Tumor Detector", "Glioma Stage"])
|
84 |
demo.launch()
|