Spaces:
Runtime error
Runtime error
Update TumorModel.py
Browse files- TumorModel.py +10 -9
TumorModel.py
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
-
# TumorModel.py
|
2 |
-
|
3 |
import torch.nn as nn
|
4 |
|
5 |
class TumorClassification(nn.Module):
|
6 |
def __init__(self):
|
7 |
super(TumorClassification, self).__init__()
|
8 |
-
self.con1d = nn.Conv2d(1,
|
9 |
self.relu1 = nn.ReLU()
|
10 |
self.pool1 = nn.MaxPool2d(2)
|
11 |
|
12 |
-
self.con2d = nn.Conv2d(
|
13 |
self.relu2 = nn.ReLU()
|
14 |
self.pool2 = nn.MaxPool2d(2)
|
15 |
|
16 |
-
self.con3d = nn.Conv2d(
|
17 |
self.relu3 = nn.ReLU()
|
18 |
self.pool3 = nn.MaxPool2d(2)
|
19 |
|
20 |
self.flatten = nn.Flatten()
|
21 |
-
self.fc1 = nn.Linear(
|
22 |
self.relu_fc = nn.ReLU()
|
23 |
-
self.fc2 = nn.Linear(
|
|
|
|
|
24 |
|
25 |
def forward(self, x):
|
26 |
x = self.pool1(self.relu1(self.con1d(x)))
|
@@ -28,13 +28,14 @@ class TumorClassification(nn.Module):
|
|
28 |
x = self.pool3(self.relu3(self.con3d(x)))
|
29 |
x = self.flatten(x)
|
30 |
x = self.relu_fc(self.fc1(x))
|
31 |
-
x = self.fc2(x)
|
|
|
32 |
return x
|
33 |
|
34 |
|
35 |
class GliomaStageModel(nn.Module):
|
36 |
def __init__(self):
|
37 |
-
super().__init__()
|
38 |
self.model = nn.Sequential(
|
39 |
nn.Linear(9, 128),
|
40 |
nn.ReLU(),
|
|
|
|
|
|
|
1 |
import torch.nn as nn
|
2 |
|
3 |
class TumorClassification(nn.Module):
|
4 |
def __init__(self):
|
5 |
super(TumorClassification, self).__init__()
|
6 |
+
self.con1d = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
|
7 |
self.relu1 = nn.ReLU()
|
8 |
self.pool1 = nn.MaxPool2d(2)
|
9 |
|
10 |
+
self.con2d = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
11 |
self.relu2 = nn.ReLU()
|
12 |
self.pool2 = nn.MaxPool2d(2)
|
13 |
|
14 |
+
self.con3d = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
15 |
self.relu3 = nn.ReLU()
|
16 |
self.pool3 = nn.MaxPool2d(2)
|
17 |
|
18 |
self.flatten = nn.Flatten()
|
19 |
+
self.fc1 = nn.Linear(128 * 28 * 28, 512) # 86528 = 128 * 28 * 28
|
20 |
self.relu_fc = nn.ReLU()
|
21 |
+
self.fc2 = nn.Linear(512, 256)
|
22 |
+
self.relu_fc2 = nn.ReLU()
|
23 |
+
self.output = nn.Linear(256, 4)
|
24 |
|
25 |
def forward(self, x):
|
26 |
x = self.pool1(self.relu1(self.con1d(x)))
|
|
|
28 |
x = self.pool3(self.relu3(self.con3d(x)))
|
29 |
x = self.flatten(x)
|
30 |
x = self.relu_fc(self.fc1(x))
|
31 |
+
x = self.relu_fc2(self.fc2(x))
|
32 |
+
x = self.output(x)
|
33 |
return x
|
34 |
|
35 |
|
36 |
class GliomaStageModel(nn.Module):
|
37 |
def __init__(self):
|
38 |
+
super(GliomaStageModel, self).__init__()
|
39 |
self.model = nn.Sequential(
|
40 |
nn.Linear(9, 128),
|
41 |
nn.ReLU(),
|