Codewithsalty commited on
Commit
af448e4
·
verified ·
1 Parent(s): e4d0007

Update TumorModel.py

Browse files
Files changed (1) hide show
  1. TumorModel.py +10 -9
TumorModel.py CHANGED
@@ -1,26 +1,26 @@
1
- # TumorModel.py
2
-
3
  import torch.nn as nn
4
 
5
  class TumorClassification(nn.Module):
6
  def __init__(self):
7
  super(TumorClassification, self).__init__()
8
- self.con1d = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)
9
  self.relu1 = nn.ReLU()
10
  self.pool1 = nn.MaxPool2d(2)
11
 
12
- self.con2d = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
13
  self.relu2 = nn.ReLU()
14
  self.pool2 = nn.MaxPool2d(2)
15
 
16
- self.con3d = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
17
  self.relu3 = nn.ReLU()
18
  self.pool3 = nn.MaxPool2d(2)
19
 
20
  self.flatten = nn.Flatten()
21
- self.fc1 = nn.Linear(64 * 28 * 28, 128) # Adjusted if input is (1, 224, 224)
22
  self.relu_fc = nn.ReLU()
23
- self.fc2 = nn.Linear(128, 4)
 
 
24
 
25
  def forward(self, x):
26
  x = self.pool1(self.relu1(self.con1d(x)))
@@ -28,13 +28,14 @@ class TumorClassification(nn.Module):
28
  x = self.pool3(self.relu3(self.con3d(x)))
29
  x = self.flatten(x)
30
  x = self.relu_fc(self.fc1(x))
31
- x = self.fc2(x)
 
32
  return x
33
 
34
 
35
  class GliomaStageModel(nn.Module):
36
  def __init__(self):
37
- super().__init__()
38
  self.model = nn.Sequential(
39
  nn.Linear(9, 128),
40
  nn.ReLU(),
 
 
 
1
  import torch.nn as nn
2
 
3
  class TumorClassification(nn.Module):
4
  def __init__(self):
5
  super(TumorClassification, self).__init__()
6
+ self.con1d = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
7
  self.relu1 = nn.ReLU()
8
  self.pool1 = nn.MaxPool2d(2)
9
 
10
+ self.con2d = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
11
  self.relu2 = nn.ReLU()
12
  self.pool2 = nn.MaxPool2d(2)
13
 
14
+ self.con3d = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
15
  self.relu3 = nn.ReLU()
16
  self.pool3 = nn.MaxPool2d(2)
17
 
18
  self.flatten = nn.Flatten()
19
+ self.fc1 = nn.Linear(128 * 28 * 28, 512) # 86528 = 128 * 28 * 28
20
  self.relu_fc = nn.ReLU()
21
+ self.fc2 = nn.Linear(512, 256)
22
+ self.relu_fc2 = nn.ReLU()
23
+ self.output = nn.Linear(256, 4)
24
 
25
  def forward(self, x):
26
  x = self.pool1(self.relu1(self.con1d(x)))
 
28
  x = self.pool3(self.relu3(self.con3d(x)))
29
  x = self.flatten(x)
30
  x = self.relu_fc(self.fc1(x))
31
+ x = self.relu_fc2(self.fc2(x))
32
+ x = self.output(x)
33
  return x
34
 
35
 
36
  class GliomaStageModel(nn.Module):
37
  def __init__(self):
38
+ super(GliomaStageModel, self).__init__()
39
  self.model = nn.Sequential(
40
  nn.Linear(9, 128),
41
  nn.ReLU(),