Spaces:
Runtime error
Runtime error
Update TumorModel.py
Browse files- TumorModel.py +14 -11
TumorModel.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import torch.nn as nn
|
2 |
|
3 |
-
#
|
4 |
class TumorClassification(nn.Module):
|
5 |
def __init__(self):
|
6 |
super(TumorClassification, self).__init__()
|
@@ -17,7 +17,7 @@ class TumorClassification(nn.Module):
|
|
17 |
self.pool3 = nn.MaxPool2d(2)
|
18 |
|
19 |
self.flatten = nn.Flatten()
|
20 |
-
self.fc1 = nn.Linear(86528, 512) #
|
21 |
self.relu_fc = nn.ReLU()
|
22 |
self.fc2 = nn.Linear(512, 256)
|
23 |
self.relu_fc2 = nn.ReLU()
|
@@ -32,17 +32,20 @@ class TumorClassification(nn.Module):
|
|
32 |
x = self.relu_fc2(self.fc2(x))
|
33 |
return self.output(x)
|
34 |
|
35 |
-
# 🧬 Glioma Stage
|
36 |
class GliomaStageModel(nn.Module):
|
37 |
def __init__(self):
|
38 |
super(GliomaStageModel, self).__init__()
|
39 |
-
self.
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
)
|
46 |
|
47 |
def forward(self, x):
|
48 |
-
|
|
|
|
|
|
|
|
1 |
import torch.nn as nn
|
2 |
|
3 |
+
# 🧠 Tumor Type Classification Model
|
4 |
class TumorClassification(nn.Module):
|
5 |
def __init__(self):
|
6 |
super(TumorClassification, self).__init__()
|
|
|
17 |
self.pool3 = nn.MaxPool2d(2)
|
18 |
|
19 |
self.flatten = nn.Flatten()
|
20 |
+
self.fc1 = nn.Linear(86528, 512) # Adjust this number to match your original
|
21 |
self.relu_fc = nn.ReLU()
|
22 |
self.fc2 = nn.Linear(512, 256)
|
23 |
self.relu_fc2 = nn.ReLU()
|
|
|
32 |
x = self.relu_fc2(self.fc2(x))
|
33 |
return self.output(x)
|
34 |
|
35 |
+
# 🧬 Glioma Stage Prediction Model (MATCHES `glioma_stages.pth`)
|
36 |
class GliomaStageModel(nn.Module):
|
37 |
def __init__(self):
|
38 |
super(GliomaStageModel, self).__init__()
|
39 |
+
self.fc1 = nn.Linear(9, 128)
|
40 |
+
self.relu1 = nn.ReLU()
|
41 |
+
self.fc2 = nn.Linear(128, 64)
|
42 |
+
self.relu2 = nn.ReLU()
|
43 |
+
self.fc3 = nn.Linear(64, 32)
|
44 |
+
self.relu3 = nn.ReLU()
|
45 |
+
self.out = nn.Linear(32, 4)
|
46 |
|
47 |
def forward(self, x):
|
48 |
+
x = self.relu1(self.fc1(x))
|
49 |
+
x = self.relu2(self.fc2(x))
|
50 |
+
x = self.relu3(self.fc3(x))
|
51 |
+
return self.out(x)
|