Spaces:
Runtime error
Runtime error
Update TumorModel.py
Browse files- TumorModel.py +47 -34
TumorModel.py
CHANGED
@@ -1,34 +1,47 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
)
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TumorModel.py
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
class TumorClassification(nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super(TumorClassification, self).__init__()
|
8 |
+
self.con1d = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)
|
9 |
+
self.relu1 = nn.ReLU()
|
10 |
+
self.pool1 = nn.MaxPool2d(2)
|
11 |
+
|
12 |
+
self.con2d = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
|
13 |
+
self.relu2 = nn.ReLU()
|
14 |
+
self.pool2 = nn.MaxPool2d(2)
|
15 |
+
|
16 |
+
self.con3d = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
17 |
+
self.relu3 = nn.ReLU()
|
18 |
+
self.pool3 = nn.MaxPool2d(2)
|
19 |
+
|
20 |
+
self.flatten = nn.Flatten()
|
21 |
+
self.fc1 = nn.Linear(64 * 28 * 28, 128) # Adjusted if input is (1, 224, 224)
|
22 |
+
self.relu_fc = nn.ReLU()
|
23 |
+
self.fc2 = nn.Linear(128, 4)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.pool1(self.relu1(self.con1d(x)))
|
27 |
+
x = self.pool2(self.relu2(self.con2d(x)))
|
28 |
+
x = self.pool3(self.relu3(self.con3d(x)))
|
29 |
+
x = self.flatten(x)
|
30 |
+
x = self.relu_fc(self.fc1(x))
|
31 |
+
x = self.fc2(x)
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class GliomaStageModel(nn.Module):
|
36 |
+
def __init__(self):
|
37 |
+
super().__init__()
|
38 |
+
self.model = nn.Sequential(
|
39 |
+
nn.Linear(9, 128),
|
40 |
+
nn.ReLU(),
|
41 |
+
nn.Linear(128, 64),
|
42 |
+
nn.ReLU(),
|
43 |
+
nn.Linear(64, 4)
|
44 |
+
)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
return self.model(x)
|