Spaces:
Runtime error
Runtime error
Update TumorModel.py
Browse files- TumorModel.py +19 -17
TumorModel.py
CHANGED
@@ -1,29 +1,31 @@
|
|
1 |
import torch.nn as nn
|
|
|
2 |
|
3 |
class TumorClassification(nn.Module):
|
4 |
def __init__(self):
|
5 |
super().__init__()
|
6 |
-
self.
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
nn.ReLU(),
|
17 |
-
nn.MaxPool2d(2),
|
18 |
-
|
19 |
-
nn.Flatten(),
|
20 |
-
nn.Linear(128 * 26 * 26, 512), # 128×26×26 = 86528
|
21 |
-
nn.ReLU(),
|
22 |
-
nn.Linear(512, 4) # 4 classes
|
23 |
-
)
|
24 |
|
25 |
def forward(self, x):
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
class GliomaStageModel(nn.Module):
|
29 |
def __init__(self):
|
|
|
1 |
import torch.nn as nn
|
2 |
+
import torch
|
3 |
|
4 |
class TumorClassification(nn.Module):
|
5 |
def __init__(self):
|
6 |
super().__init__()
|
7 |
+
self.con1d = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
|
8 |
+
self.con2d = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
9 |
+
self.con3d = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
10 |
+
|
11 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
12 |
|
13 |
+
self.fc1 = nn.Linear(128 * 26 * 26, 512) # Must match training input size (208x208 image)
|
14 |
+
self.fc2 = nn.Linear(512, 256)
|
15 |
+
self.output = nn.Linear(256, 4)
|
16 |
|
17 |
+
self.relu = nn.ReLU()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def forward(self, x):
|
20 |
+
x = self.pool(self.relu(self.con1d(x)))
|
21 |
+
x = self.pool(self.relu(self.con2d(x)))
|
22 |
+
x = self.pool(self.relu(self.con3d(x)))
|
23 |
+
x = x.view(x.size(0), -1)
|
24 |
+
x = self.relu(self.fc1(x))
|
25 |
+
x = self.relu(self.fc2(x))
|
26 |
+
x = self.output(x)
|
27 |
+
return x
|
28 |
+
|
29 |
|
30 |
class GliomaStageModel(nn.Module):
|
31 |
def __init__(self):
|