import torch import gradio as gr from PIL import Image from torchvision import transforms from TumorModel import TumorClassification, GliomaStageModel # ✅ Load tumor classification model tumor_model = TumorClassification() tumor_model.load_state_dict(torch.load("BTD_model.pth", map_location=torch.device("cpu"))) tumor_model.eval() # ✅ Load glioma stage classification model glioma_model = GliomaStageModel() glioma_model.load_state_dict(torch.load("glioma_stages.pth", map_location=torch.device("cpu"))) glioma_model.eval() # ✅ Labels tumor_labels = ['glioma', 'meningioma', 'notumor', 'pituitary'] stage_labels = ['Stage 1', 'Stage 2', 'Stage 3', 'Stage 4'] # ✅ Transform (resize to 208x208 to match training) transform = transforms.Compose([ transforms.Grayscale(), transforms.Resize((208, 208)), # <-- important for matching FC input transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) # ✅ Tumor Prediction Function def predict_tumor(image): image = transform(image).unsqueeze(0) with torch.no_grad(): out = tumor_model(image) pred = torch.argmax(out, dim=1).item() return tumor_labels[pred] # ✅ Glioma Stage Prediction Function def predict_stage(gender, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca): gender_val = 0 if gender == "Male" else 1 features = [gender_val, age, idh1, tp53, atrx, pten, egfr, cic, pik3ca] x = torch.tensor(features).float().unsqueeze(0) with torch.no_grad(): out = glioma_model(x) pred = torch.argmax(out, dim=1).item() return stage_labels[pred] # ✅ Tumor Detection Tab tumor_tab = gr.Interface( fn=predict_tumor, inputs=gr.Image(type="pil"), outputs=gr.Label(), title="🧠 Brain Tumor Detector", description="Upload an MRI image to classify tumor type: glioma, meningioma, notumor, or pituitary." ) # ✅ Glioma Stage Prediction Tab stage_tab = gr.Interface( fn=predict_stage, inputs=[ gr.Radio(["Male", "Female"], label="Gender"), gr.Slider(0, 100, label="Age"), gr.Slider(0, 1, step=1, label="IDH1 Mutation"), gr.Slider(0, 1, step=1, label="TP53 Mutation"), gr.Slider(0, 1, step=1, label="ATRX Mutation"), gr.Slider(0, 1, step=1, label="PTEN Mutation"), gr.Slider(0, 1, step=1, label="EGFR Mutation"), gr.Slider(0, 1, step=1, label="CIC Mutation"), gr.Slider(0, 1, step=1, label="PIK3CA Mutation") ], outputs=gr.Label(), title="🧬 Glioma Stage Classifier", description="Enter mutation and demographic data to classify glioma stage." ) # ✅ Combine into a tabbed interface demo = gr.TabbedInterface( [tumor_tab, stage_tab], tab_names=["Tumor Detector", "Glioma Stage Predictor"] ) # ✅ Launch the app demo.launch()