Spaces:
Runtime error
Runtime error
CodingBillionaire
commited on
Commit
·
c5817c3
1
Parent(s):
77980e6
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,158 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import tempfile
|
3 |
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
from typing import Tuple, List
|
6 |
|
7 |
+
# Setup and installation
|
8 |
+
os.system("git clone https://github.com/neonbjb/tortoise-tts.git")
|
9 |
+
os.system("cd tortoise-tts")
|
10 |
+
os.system("git reset --hard 8c0b3855bfb5312adf2b000b52cf5cfa2830c310")
|
11 |
+
sys.path.append("./tortoise-tts/")
|
12 |
+
os.system("pip install -r ./tortoise-tts/requirements.txt")
|
13 |
+
os.system("python ./tortoise-tts/setup.py install")
|
14 |
|
15 |
+
import torch
|
16 |
+
import torchaudio
|
17 |
+
import torch.nn as nn
|
18 |
+
import torch.nn.functional as F
|
19 |
+
|
20 |
+
from tortoise.api import TextToSpeech
|
21 |
+
from tortoise.utils.audio import load_audio, load_voice
|
22 |
+
|
23 |
+
|
24 |
+
# Download and instantiate model
|
25 |
+
tts = TextToSpeech()
|
26 |
+
|
27 |
+
|
28 |
+
# Display parameters
|
29 |
+
VOICES = ["random","train_atkins","train_daws","train_dotrice","train_dreams","train_empire","train_grace","train_kennard","train_lescault","train_mouse","angie","applejack","daniel","deniro","emma","freeman","geralt","halle","jlaw","lj","mol","myself","pat","pat2","rainbow","snakes","tim_reynolds","tom","weaver","william"]
|
30 |
+
DEFAULT_VOICE = "random"
|
31 |
+
PRESETS = ["ultra_fast", "fast", "standard", "high_quality"]
|
32 |
+
DEFAULT_PRESET = "fast"
|
33 |
+
DEFAULT_TEXT = "Hello, world!"
|
34 |
+
|
35 |
+
README = """# TorToiSe
|
36 |
+
forked from https://huggingface.co/spaces/mdnestor/tortoise
|
37 |
+
Tortoise is a text-to-speech model developed by James Betker. It is capable of zero-shot voice cloning from a small set of voice samples. GitHub repo: [neonbjb/tortoise-tts](https://github.com/neonbjb/tortoise-tts).
|
38 |
+
## Usage
|
39 |
+
1. Select a model preset and type the text to speak.
|
40 |
+
2. Load a voice - either by choosing a preset, uploading audio files, or recording via microphone. Select the option to split audio into chunks if the clips are much longer than 10 seconds each. Follow the guidelines in the [voice customization guide](https://github.com/neonbjb/tortoise-tts#voice-customization-guide).
|
41 |
+
3. Click **Generate**, and wait - it's called *tortoise* for a reason!
|
42 |
+
"""
|
43 |
+
|
44 |
+
TORTOISE_SR_IN = 22050
|
45 |
+
TORTOISE_SR_OUT = 24000
|
46 |
+
|
47 |
+
def chunk_audio(t: torch.Tensor, sample_rate: int, chunk_duration_sec: int) -> List[torch.Tensor]:
|
48 |
+
duration = t.shape[1] / sample_rate
|
49 |
+
num_chunks = 1 + int(duration/chunk_duration_sec)
|
50 |
+
chunks = [t[:,(sample_rate*chunk_duration_sec*i):(sample_rate*chunk_duration_sec*(i+1))] for i in range(num_chunks)]
|
51 |
+
# remove 0-width chunks
|
52 |
+
chunks = [chunk for chunk in chunks if chunk.shape[1]>0]
|
53 |
+
return chunks
|
54 |
+
|
55 |
+
def tts_main(voice_samples: List[torch.Tensor], text: str, model_preset: str) -> str:
|
56 |
+
gen = tts.tts_with_preset(
|
57 |
+
text,
|
58 |
+
voice_samples=voice_samples,
|
59 |
+
conditioning_latents=None,
|
60 |
+
preset=model_preset
|
61 |
+
)
|
62 |
+
torchaudio.save("generated.wav", gen.squeeze(0).cpu(), TORTOISE_SR_OUT)
|
63 |
+
return "generated.wav"
|
64 |
+
|
65 |
+
def tts_from_preset(voice: str, text, model_preset):
|
66 |
+
voice_samples, _ = load_voice(voice)
|
67 |
+
return tts_main(voice_samples, text, model_preset)
|
68 |
+
|
69 |
+
def tts_from_files(files: List[tempfile._TemporaryFileWrapper], do_chunk, text, model_preset):
|
70 |
+
voice_samples = [load_audio(f.name, TORTOISE_SR_IN) for f in files]
|
71 |
+
if do_chunk:
|
72 |
+
voice_samples = [chunk for t in voice_samples for chunk in chunk_audio(t, TORTOISE_SR_IN, 10)]
|
73 |
+
return tts_main(voice_samples, text, model_preset)
|
74 |
+
|
75 |
+
def tts_from_recording(recording: Tuple[int, np.ndarray], do_chunk, text, model_preset):
|
76 |
+
sample_rate, audio = recording
|
77 |
+
# normalize- https://github.com/neonbjb/tortoise-tts/blob/main/tortoise/utils/audio.py#L16
|
78 |
+
norm_fix = 1
|
79 |
+
if audio.dtype == np.int32:
|
80 |
+
norm_fix = 2**31
|
81 |
+
elif audio.dtype == np.int16:
|
82 |
+
norm_fix = 2**15
|
83 |
+
audio = torch.FloatTensor(audio.T) / norm_fix
|
84 |
+
if len(audio.shape) > 1:
|
85 |
+
# convert to mono
|
86 |
+
audio = torch.mean(audio, axis=0).unsqueeze(0)
|
87 |
+
audio = torchaudio.transforms.Resample(sample_rate, TORTOISE_SR_IN)(audio)
|
88 |
+
if do_chunk:
|
89 |
+
voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
|
90 |
+
else:
|
91 |
+
voice_samples = [audio]
|
92 |
+
return tts_main(voice_samples, text, model_preset)
|
93 |
+
|
94 |
+
def tts_from_url(audio_url, start_time, end_time, do_chunk, text, model_preset):
|
95 |
+
os.system(f"yt-dlp -x --audio-format mp3 --force-overwrites {audio_url} -o audio.mp3")
|
96 |
+
audio = load_audio("audio.mp3", TORTOISE_SR_IN)
|
97 |
+
audio = audio[:,start_time*TORTOISE_SR_IN:end_time*TORTOISE_SR_IN]
|
98 |
+
if do_chunk:
|
99 |
+
voice_samples = chunk_audio(audio, TORTOISE_SR_IN, 10)
|
100 |
+
else:
|
101 |
+
voice_samples = [audio]
|
102 |
+
return tts_main(voice_samples, text, model_preset)
|
103 |
+
|
104 |
+
|
105 |
+
with gr.Blocks() as demo:
|
106 |
+
|
107 |
+
gr.Markdown(README)
|
108 |
+
|
109 |
+
preset = gr.Dropdown(PRESETS, label="Model preset", value=DEFAULT_PRESET)
|
110 |
+
text = gr.Textbox(label="Text to speak", value=DEFAULT_TEXT)
|
111 |
+
do_chunk_label = "Split audio into chunks? (for audio much longer than 10 seconds.)"
|
112 |
+
do_chunk_default = True
|
113 |
+
|
114 |
+
with gr.Tab("Choose preset voice"):
|
115 |
+
inp1 = gr.Dropdown(VOICES, value=DEFAULT_VOICE, label="Preset voice")
|
116 |
+
btn1 = gr.Button("Generate")
|
117 |
+
|
118 |
+
with gr.Tab("Upload audio"):
|
119 |
+
inp2 = gr.File(file_count="multiple")
|
120 |
+
do_chunk2 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
|
121 |
+
btn2 = gr.Button("Generate")
|
122 |
+
|
123 |
+
with gr.Tab("Record audio"):
|
124 |
+
inp3 = gr.Audio(source="microphone")
|
125 |
+
do_chunk3 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
|
126 |
+
btn3 = gr.Button("Generate")
|
127 |
+
|
128 |
+
# with gr.Tab("From YouTube"):
|
129 |
+
# inp4 = gr.Textbox(label="URL")
|
130 |
+
# do_chunk4 = gr.Checkbox(label=do_chunk_label, value=do_chunk_default)
|
131 |
+
# start_time = gr.Number(label="Start time (seconds)", precision=0)
|
132 |
+
# end_time = gr.Number(label="End time (seconds)", precision=0)
|
133 |
+
# btn4 = gr.Button("Generate")
|
134 |
+
|
135 |
+
audio_out = gr.Audio()
|
136 |
+
|
137 |
+
btn1.click(
|
138 |
+
tts_from_preset,
|
139 |
+
[inp1, text, preset],
|
140 |
+
[audio_out],
|
141 |
+
)
|
142 |
+
btn2.click(
|
143 |
+
tts_from_files,
|
144 |
+
[inp2, do_chunk2, text, preset],
|
145 |
+
[audio_out],
|
146 |
+
)
|
147 |
+
btn3.click(
|
148 |
+
tts_from_recording,
|
149 |
+
[inp3, do_chunk3, text, preset],
|
150 |
+
[audio_out],
|
151 |
+
)
|
152 |
+
# btn4.click(
|
153 |
+
# tts_from_url,
|
154 |
+
# [inp4, start_time, end_time, do_chunk4, text, preset],
|
155 |
+
# [audio_out],
|
156 |
+
# )
|
157 |
+
|
158 |
+
demo.launch()
|