File size: 1,220 Bytes
15365f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import pickle
import numpy as np
from sklearn import datasets
import pandas as pd
iris_k_mean_model=pickle.load(open('model.sav', 'rb'))
classes=['versicolor', 'setosa' , 'virginica']
iris = datasets.load_iris()
x = pd.DataFrame(iris.data, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width'])
def predict_class_way1(new_data_point):
# Calculate the Euclidean distances between the new data point and each of the training data points.
distances = np.linalg.norm(x - new_data_point, axis=1)
# print(distances,len(distances),np.argmin(distances))
# The data point with the minimum Euclidean distance is the class of the new data point.
class_label = classes[iris_k_mean_model.labels_[np.argmin(distances)]]
return class_label
def predict_class_way2(new_data_point):
# Calculate the distances between the new data point and each of the cluster centers.
distances = np.linalg.norm(iris_k_mean_model.cluster_centers_ - new_data_point, axis=1)
# print(distances,len(distances),np.argmin(distances))
# The data point with the minimum Euclidean distance is the class of the new data point.
class_label = classes[np.argmin(distances)]
return class_label
|