import streamlit as st import requests as req from streamlit_lottie import st_lottie from prediction_helper import predict_class_way1, predict_class_way2 st.set_page_config(page_title="Welcome to Iris Classifier",page_icon=":blossom:") with st.container(): st.title("Welcome to Iris Classifier :blossom:") st.write("---") def load_lottieurl(url): r=req.get(url) if r.status_code !=200: None return r.json() lottie_flower=load_lottieurl("https://lottie.host/db599348-de9d-44a3-9e66-6490a4920520/jiH4zhQwAD.json") left_col, right_col = st.columns(2) with left_col: # Create four input fields. sepal_length = st.number_input("Sepal length (cm)", min_value=0.0, max_value=100.0) sepal_width = st.number_input("Sepal width (cm)", min_value=0.0, max_value=100.0) petal_length = st.number_input("Petal length (cm)", min_value=0.0, max_value=100.0) petal_width = st.number_input("Petal width (cm)", min_value=0.0, max_value=100.0) datapoint = [sepal_length,sepal_width,petal_length,petal_width] # Display the input fields. st.write("Sepal length:", sepal_length) st.write("Sepal width:", sepal_width) st.write("Petal length:", petal_length) st.write("Petal width:", petal_width) st.write(" **This model got accuracy of:** ", 0.8933) if(sepal_length!=0 and sepal_width!=0 and petal_length!=0 and petal_width!=0): st.write("---") result_1=predict_class_way1(datapoint) result_2=predict_class_way2(datapoint) st.write(f" I guess 🤔 it belongs to (using method 1): **{result_1.capitalize()}** ") st.write(f" I guess 🤔 it belongs to (using method 2): **{result_2.capitalize()}** ") if result_1==result_2: st.write(" **Hurray :partying_face: we got same results from both techniques!**") with right_col: st_lottie(lottie_flower,height=250,key="flower") st.caption("Made with :heart: based on the code [here](https://github.com/Ahmad-Baseer/AI-Projects)") #using local css to design contact form def local_css_for_contact_form(file_name): with open(file_name) as f: st.markdown(f"",unsafe_allow_html=True) local_css_for_contact_form("style.css")