|
import pickle |
|
import numpy as np |
|
from sklearn import datasets |
|
import pandas as pd |
|
|
|
iris_k_mean_model=pickle.load(open('model.sav', 'rb')) |
|
classes=['versicolor', 'setosa' , 'virginica'] |
|
|
|
iris = datasets.load_iris() |
|
x = pd.DataFrame(iris.data, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']) |
|
|
|
|
|
def predict_class_way1(new_data_point): |
|
|
|
distances = np.linalg.norm(x - new_data_point, axis=1) |
|
|
|
|
|
|
|
class_label = classes[iris_k_mean_model.labels_[np.argmin(distances)]] |
|
|
|
return class_label |
|
|
|
def predict_class_way2(new_data_point): |
|
|
|
distances = np.linalg.norm(iris_k_mean_model.cluster_centers_ - new_data_point, axis=1) |
|
|
|
|
|
|
|
class_label = classes[np.argmin(distances)] |
|
|
|
return class_label |
|
|