Spaces:
Runtime error
Runtime error
File size: 5,105 Bytes
4fe8a03 771b523 5d0fa3e 4fe8a03 771b523 4fe8a03 5d0fa3e 4fe8a03 5d0fa3e 4fe8a03 5d0fa3e 4fe8a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
from bs4 import BeautifulSoup
import requests
from acogsphere import acf
from bcogsphere import bcf
import math
import glob
#from python_actr import *
#from cogscidighum import *
#class myCelSci(Model):
# pass
#def main(link):
# response=getviews(link)+getresult("hello world")[0]["label"] + str(math.trunc(getresult("hello world")[0]["score"])*100/100)
# return response #result #soup.prettify()
import sqlite3
import huggingface_hub
import pandas as pd
import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler
import random
import time
DB_FILE = "./reviews.db"
TOKEN = os.environ.get('HF_KEY')
repo = huggingface_hub.Repository(
local_dir="data",
repo_type="dataset",
clone_from="CognitiveScience/csdhdata",
use_auth_token=TOKEN
)
repo.git_pull()
# Set db to latest
shutil.copyfile("./data/reviews.db", DB_FILE)
# Create table if it doesn't already exist
db = sqlite3.connect(DB_FILE)
try:
db.execute("SELECT * FROM reviews").fetchall()
db.close()
except sqlite3.OperationalError:
db.execute(
'''
CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
name TEXT, review INTEGER, comments TEXT)
''')
db.commit()
db.close()
def get_latest_reviews(db: sqlite3.Connection):
reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 10").fetchall()
total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "review", "comments"])
return reviews, total_reviews
def add_review(name: str, review: int, comments: str):
db = sqlite3.connect(DB_FILE)
cursor = db.cursor()
cursor.execute("INSERT INTO reviews(name, review, comments) VALUES(?,?,?)", [name, review, comments])
db.commit()
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
def load_data():
db = sqlite3.connect(DB_FILE)
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
def delete_review(id: int):
db = sqlite3.connect(DB_FILE)
cursor = db.cursor()
cursor.execute("DELETE FROM reviews WHERE id = ?", [id])
db.commit()
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
def delete_all_reviews():
db = sqlite3.connect(DB_FILE)
cursor = db.cursor()
cursor.execute("DELETE FROM reviews")
db.commit()
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
#def cs(link):
# response="Hi " + "bcf" #(link) #acf("hello world")[0]["label"] + str(math.trunc(acf("hello world")[0]["score"])*100/100)+bcf(link)
# return response #result #soup.prettify()
def respond3(message, chat_history):
bot_message = random.choice(["How are you3?", "I love you3", "I'm very hungry3"])
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Box():
#gr.Markdown("Based on dataset [here](https://huggingface.co/datasets/freddyaboulton/gradio-reviews)")
data = gr.Dataframe()
count = gr.Number(label="Rates!")
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])
def respond(message, chat_history):
bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
submit.click(add_review, [name, review, comments], [data, count])
#cssubmit.click(add_review, [name, review, comments], [data, count])
#record2del = gr.Textbox(label="Id: ", lines=1, placeholder="to delete?")
#submit2 = gr.Button(value="Delete Review")
#id_input = gr.Number(value=202, visible=False)
#submit2.click(delete_review, id_input)
#submit3 = gr.Button(value="Delete All Reviews")
#submit3.click(delete_all_reviews)
demo.load(load_data, None, [data, count])
def backup_db():
shutil.copyfile(DB_FILE, "./data/reviews.db")
db = sqlite3.connect(DB_FILE)
reviews = db.execute("SELECT * FROM reviews").fetchall()
pd.DataFrame(reviews).to_csv("./data/reviews.csv", index=False)
print("updating db")
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
scheduler = BackgroundScheduler()
scheduler.add_job(func=backup_db, trigger="interval", seconds=60)
scheduler.start()
demo.launch() |