File size: 11,000 Bytes
339056d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from fastapi import FastAPI, HTTPException
import streamlit as st
import pandas as pd
from pydantic import BaseModel, Field, validator
import numpy as np
import plotly.graph_objects as go

from azure_openai import converse_with_patient, create_diagnosis 
from memory import get_conversation, store_conversation, update_conversation
import uuid

class ask_question (BaseModel):
    user_input: str
    id: str

app = FastAPI()


def generate_expert_confidence_chart(diagnosis):
    """
    Extracts expert confidence data from JSON and generates a multi-colored bar chart.
    """

    # Extract expert distribution data
    expert_distribution = diagnosis["expert_distribution"]

    # Process the data into a structured format
    rows = []
    for key, value in expert_distribution.items():
        expert, attribute = key.rsplit(", ", 1)  # Ensure splitting at the last comma
        rows.append({"Expert": expert, "Attribute": attribute, "Value": value})

    # Create a DataFrame
    df = pd.DataFrame(rows)

    # Filter the DataFrame for confidence values only
    df_confidence = df[df["Attribute"] == "confidence"].copy()

    # Merge confidence values with corresponding thinking explanations
    df_thinking = df[df["Attribute"] == "thinking"].copy()
    df_confidence = df_confidence.merge(df_thinking, on="Expert", suffixes=("_confidence", "_thinking"))

    # Convert confidence values to numeric
    df_confidence["Value_confidence"] = pd.to_numeric(df_confidence["Value_confidence"])

    # Define a function to map confidence scores to colors
    def confidence_to_color(confidence):
        """
        Maps confidence score (0-100) to a blended color between red (0 confidence) and green (100 confidence).
        """
        red = np.array([255, 0, 0])
        green = np.array([0, 255, 0])
        blend_ratio = confidence / 100  # Normalize between 0 and 1
        blended_color = (1 - blend_ratio) * red + blend_ratio * green
        return f"rgb({int(blended_color[0])}, {int(blended_color[1])}, {int(blended_color[2])})"

    # Apply color mapping
    df_confidence["Color"] = df_confidence["Value_confidence"].apply(confidence_to_color)

    # Create the bar chart
    fig = go.Figure()

    # Add bars with customized colors and reduced spacing
    fig.add_trace(go.Bar(
        y=df_confidence["Expert"],
        x=df_confidence["Value_confidence"],
        text=df_confidence["Value_confidence"],
        hovertext=df_confidence["Value_thinking"],
        orientation="h",
        marker=dict(color=df_confidence["Color"]),
        width=0.3,  # Reduce bar width for closer spacing
        textposition="inside"
    ))

    # Update layout for better visibility
    fig.update_layout(
        title="Expert Confidence in Diagnosis",
        xaxis_title="Confidence Score",
        yaxis_title="Medical Expert",
        yaxis=dict(tickmode="linear", dtick=1, automargin=True),
        height=max(400, 40 * len(df_confidence)),  # Adjust height dynamically
        bargap=0.1  # Reduce spacing between bars
    )

    # Update hover template
    fig.update_traces(
        hovertemplate="<b>%{y}</b><br>Confidence: %{x}%<br>Thinking: %{hovertext}"
    )

    # Show the plot
    return fig


# FastAPI interface routes
# @app.get("/")
# async def root():
#     return {"message": "Welcome to the GenAI Symptom Checker"}

# @app.post("/ask")
# async def ask_question(question: ask_question):
#     try:
#         user_input = question.user_input
#         conversation_id = question.id
   
#         exists, count, conversation_obj = get_conversation(conversation_id)
#         if count == 6:
#             response = converse_with_patient(conversation_obj, user_input)
#             store_conversation(conversation_id, conversation_id, user_input, response)
#             exists, count, conversation_obj = get_conversation(conversation_id)
#             diagnosis = create_diagnosis(conversation_obj)
#             return {"response": response, "count": count, "diagnosis": diagnosis}
#         if count > 6:
#             exists, count, conversation_obj = get_conversation(conversation_id)
#             diagnosis_content = next((item['content'] for item in conversation_obj if item['role'] == 'diagnosis'), None)
#             return {"response": "You have reached the maximum number of questions", "count": count, "diagnosis": diagnosis_content}
#         if exists == "PASS":
#             response = converse_with_patient(conversation_obj, user_input)
#             update_conversation(conversation_id, conversation_id, user_input, response)
#             return {"response": response, "count": count, "diagnosis": "none"}
        
#         else:
#             response = converse_with_patient("",user_input)
#             store_conversation(conversation_id, conversation_id, user_input, response)
#             return {"response": response, "count": count, "diagnosis": "none"}

#     except Exception as e:
#         raise HTTPException(status_code=500, detail=str(e))

# app config

st.set_page_config(page_title="virtual clinician", page_icon=":medical_symbol:")
st.title("Virtual Clinician :medical_symbol:")

user_id = st.text_input("Name:", key="user_id")

conversation_id = user_id
# Ensure user_id is defined or fallback to a default value
if not user_id:
    st.warning("Hi, Who am I speaking with?")
else:
        # session state
        if "chat_history" not in st.session_state:
            st.session_state.chat_history = [
                {"role": "AI", "content": f"Hello, {user_id} I am the virtual clinician. How can I help you today?"},
            ]


        # conversation
        for message in st.session_state.chat_history:
            if message["role"] == "AI":
                with st.chat_message("AI"):
                    st.write(message["content"])
            elif message["role"] == "Human":
                with st.chat_message("Human"):
                    st.write(message["content"])

        # user input
        user_input = st.chat_input("Type your message here...")
        if user_input is not None and user_input != "":
            st.session_state.chat_history.append({"role": "Human", "content": user_input})
        

            with st.chat_message("Human"):
                st.markdown(user_input)

            # this functions checks to see if the conversation exists
            exists, count, conversation_obj = get_conversation(conversation_id)
            # if the conversation does not exist, it creates a new conversation 


            if count > 5:
                response = converse_with_patient(conversation_obj, user_input)
                conversation_obj = update_conversation(conversation_id, user_input, response)
                print(conversation_obj)
                with st.spinner("Creating a diagnosis..."):
                    outcome, diagnosis = create_diagnosis(conversation_obj)
                    if outcome == "SUCCESS":
                        st.subheader("Diagnosis Summary")
                        st.write(f"**Diagnosis:** {diagnosis['concensus_diagnosis']}")
                        st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
                        st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
                        st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
                        st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
                        st.write(f"**Next Best Action:** {diagnosis['next_best_action_']}")
                        st.write(f"**Next Best Action Explanation:** {diagnosis['next_best_action_explanation']}")
                        st.write(f"**Next Best Action Confidence:** {diagnosis['next_best_action_confidence']}%")

                        # Generate and display the plotly chart
                        st.subheader("Expert Confidence Levels")
                        fig = generate_expert_confidence_chart(diagnosis)
                        st.plotly_chart(fig)

                    # if the diagnosis is not successful, display a message
                    if outcome == "FAIL1":
                        st.write("Diagnosis not available Failed to find concensus")
                        st.subheader("Incomplete Diagnosis")
                        st.write(f"**Diagnosis:** {diagnosis['concensus_diagnosis']}")
                        st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
                        st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
                        st.write(f"**Next Best Action:** See GP")
                        st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")

                        # Generate and display the plotly chart
                        st.subheader("Expert Confidence Levels")
                        fig = generate_expert_confidence_chart(diagnosis)
                        st.plotly_chart(fig)

                    if outcome == "FAIL2":
                        st.write("Diagnosis not available Failed to match described symptoms with know symptoms  for AI diagnosis")
                        st.subheader("Incomplete Diagnosis")
                        st.write(f"**Diagnosis:** {diagnosis['concensus_diagnosis']}")
                        st.write(f"**Consensus Confidence:** {diagnosis['concensus_confidence']}%")
                        st.write(f"**Consensus Thinking:** {diagnosis['concensus_thinking']}")
                        st.write(f"**Evaluation Confidence:** {diagnosis['evaluate_confidence']}%")
                        st.write(f"**Evaluation Explanation:** {diagnosis['evaluate_explanation']}")
                        st.write(f"**Next Best Action:** See GP")
                        st.write(f"**Next Best Action Explanation:** Please give more details to help the AI better understand your symptoms ")

                        # Generate and display the plotly chart
                        st.subheader("Expert Confidence Levels")
                        fig = generate_expert_confidence_chart(diagnosis)
                        st.plotly_chart(fig)
            
            if exists == "PASS":
                    response = converse_with_patient(conversation_obj, user_input)
                    update_conversation(conversation_id, user_input, response)
                    st.session_state.chat_history.append({"role": "AI", "content": response})  
                    with st.chat_message("AI"):
                        st.write(response) 
                
            else:
                    response = converse_with_patient("",user_input)
                    store_conversation(conversation_id, user_input, response)
                    st.session_state.chat_history.append({"role": "AI", "content": response})    
                    with st.chat_message("AI"):
                        st.write(response)