Spaces:
Sleeping
Sleeping
File size: 11,036 Bytes
3daab2e 1b74362 3daab2e 4c318b5 3daab2e 91c2853 3daab2e 4c318b5 3daab2e 4c318b5 3daab2e 91c2853 3daab2e 4c318b5 3daab2e 4c318b5 3daab2e 91c2853 3daab2e 91c2853 3daab2e 4c318b5 3daab2e 4c318b5 3daab2e 4c318b5 3daab2e 4c318b5 3daab2e 4c318b5 3daab2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import streamlit as st
import PyPDF2
import pandas as pd
import uuid
import tiktoken
import re
from datetime import datetime
from helper_functions import extract_text_from_pdf
from azure_openai import evaluation_process, process_insight, process_compare, risk_score_process, process_chunks
def count_tokens_with_tiktoken(text):
"""
Counts the number of tokens in a given text using tiktoken.
:param text: Input text.
:return: Token count.
"""
tokenizer = tiktoken.get_encoding("cl100k_base")
tokens = tokenizer.encode(text)
return len(tokens), tokens
def split_text_into_chunks_with_tiktoken_and_pages(text, page_texts, chunk_size, overlap):
"""
Splits text into chunks based on a specified chunk size in tokens and overlap using tiktoken.
Tracks start and end page numbers for each chunk.
:param text: Combined text of the document.
:param page_texts: List of tuples [(page_number, page_text), ...].
:param chunk_size: Maximum size of each chunk in tokens.
:param overlap: Number of overlapping tokens between consecutive chunks.
:return: List of dictionaries representing chunks with start and end pages.
"""
_, tokens = count_tokens_with_tiktoken(text)
chunks = []
# Map token positions to page numbers
page_token_map = []
tokenizer = tiktoken.get_encoding("cl100k_base")
for page_number, page_text in page_texts:
page_tokens = tokenizer.encode(page_text)
page_token_map.extend([page_number] * len(page_tokens))
for start in range(0, len(tokens), chunk_size - overlap):
end = min(start + chunk_size, len(tokens))
chunk_tokens = tokens[start:end]
chunk_text = tokenizer.decode(chunk_tokens)
# Determine start and end pages
start_page = page_token_map[start] if start < len(page_token_map) else None
end_page = page_token_map[end - 1] if end - 1 < len(page_token_map) else page_texts[-1][0]
chunks.append({
"ChunkText": chunk_text,
"TokenCount": len(chunk_tokens),
"StartPage": start_page,
"EndPage": end_page,
"ChunkID": str(uuid.uuid4())
})
return chunks
def split_dataframe_with_combined_text_and_pages(df, chunk_size, overlap):
"""
Splits the combined text of a DataFrame into chunks using tiktoken.
Each chunk will include start and end page numbers.
:param df: DataFrame with columns ['Title', 'Text', 'PageTexts'].
:param chunk_size: The maximum size of each chunk in tokens.
:param overlap: The number of overlapping tokens between consecutive chunks.
:return: DataFrame with columns ['ChunkText', 'TokenCount', 'StartPage', 'EndPage', 'ChunkID'].
"""
chunks = []
for _, row in df.iterrows():
text = row['Text']
page_texts = row['PageTexts']
split_chunks = split_text_into_chunks_with_tiktoken_and_pages(text, page_texts, chunk_size, overlap)
chunks.extend(split_chunks)
return pd.DataFrame(chunks)
def main():
st.set_page_config(page_title="RegIntel Risk Analyser", page_icon=":vertical_traffic_light:")
st.title("External RegIntel Risk Analyser :vertical_traffic_light:")
topic = st.selectbox("Please choose a focus for the system",("Labelling",
"Institutional Review Board/Independent Ethics Committee",
"Investigator", "Sponsor",
"Clinical Trial Protocol and protocol amendments",
"Investigator's Brochure", "Conduct of Clinical Trial",
"Monitoring", "Auditing",
"Data handling and record keeping",
"clinical trial reports",
"Responsibilities of the Sponsor and Investigator",
"Sponsor Inspection Preparation"),)
uploaded_extintl_file_insight = st.file_uploader("Upload a External Reg Intel", type="pdf")
uploaded_interintel_file_insight = st.file_uploader("Upload a Internal Reg Intel", type="pdf")
if uploaded_extintl_file_insight is not None and uploaded_interintel_file_insight is not None:
uploaded_file_SOP = st.file_uploader("Upload the draft submission file", type="pdf")
if uploaded_file_SOP is not None:
# Extract insight document
with st.spinner("Processing External Reg Intel"):
ext_intl_text_insight, ext_intl_page_texts_insight = extract_text_from_pdf(uploaded_extintl_file_insight)
token_count_insight, _ = count_tokens_with_tiktoken(ext_intl_text_insight)
st.sidebar.success("External Reg Intel file successfully processed")
st.write("Token Count")
st.write(f"The PDF contains **{token_count_insight}** tokens.")
with st.spinner("Processing Internal Reg Intel"):
int_intl_text_insight, int_intl_page_texts_insight = extract_text_from_pdf(uploaded_interintel_file_insight)
token_count_insight, _ = count_tokens_with_tiktoken(int_intl_text_insight)
st.sidebar.success("Internal Reg Intel file successfully processed")
st.write("Token Count")
st.write(f"The PDF contains **{token_count_insight}** tokens.")
# Extract draft submission document
with st.spinner("Processing the draft submission file Text..."):
text_SOP, page_texts_SOP = extract_text_from_pdf(uploaded_file_SOP)
token_count_SOP, _ = count_tokens_with_tiktoken(text_SOP)
st.sidebar.success("draft submission file successfully processed")
st.write("Token Count")
st.write(f"The PDF contains **{token_count_SOP}** tokens.")
# Process external insight Insights into chunks
with st.spinner("Processing the Insight Document..."):
df_ei_input_insight = pd.DataFrame([{ "Title": uploaded_extintl_file_insight.name, "Text": ext_intl_text_insight, "PageTexts": ext_intl_page_texts_insight }])
df_ei_insight_chunks = split_dataframe_with_combined_text_and_pages(df_ei_input_insight, 10000, 1000)
st.write("Processed External Reg Intel")
st.sidebar.success("Processed External Reg Intel")
st.write(df_ei_insight_chunks)
# Process internal insight Insights into chunks
with st.spinner("Processing the Insight Document..."):
df_ii_input_insight = pd.DataFrame([{ "Title": uploaded_interintel_file_insight.name, "Text": int_intl_text_insight, "PageTexts": int_intl_page_texts_insight }])
df_ii_insight_chunks = split_dataframe_with_combined_text_and_pages(df_ii_input_insight, 10000, 1000)
st.write("Processed Internal Reg Intel")
st.sidebar.success("Processed Internal Reg Intel")
st.write(df_ii_insight_chunks)
# Process draft submission file into chunks
with st.spinner("Processing the draft submission file..."):
df_input_SOP = pd.DataFrame([{ "Title": uploaded_file_SOP.name, "Text": text_SOP, "PageTexts": page_texts_SOP }])
df_sop_chunks = split_dataframe_with_combined_text_and_pages(df_input_SOP, 10000, 1000)
st.write("Processed draft submission file")
st.sidebar.success("Processed draft submission file")
st.write(df_sop_chunks)
# Evaluate Document
with st.spinner("Evaluating document"):
df_ei_eval, ei_con, ei_score = evaluation_process(df_ei_insight_chunks, topic,"ext")
ei_score["source"]="external intel"
df_ei_eval["source"]="external intel"
df_ii_eval, ii_con, ii_score = evaluation_process(df_ii_insight_chunks, topic,"intl")
ii_score["source"]="internal intel"
df_ii_eval["source"]="internal intel"
score = pd.concat([ei_score, ii_score])
st.write("External & Internal Inteligence Evaluation")
st.sidebar.success(f"Evaluation Concensus: {ei_con}")
st.write(f"Evaluation Concensus: {ei_con}")
st.write("Evaluation Scores:")
st.write(score)
if ei_con == "False" and ii_con == "False":
st.sidebar.error("Document Not Relevant To Topic")
st.write("Document Not Relevant To Topic")
st.write("Exiting RegIntel Analysis")
return
# Generate Insights
with st.spinner("Creating insights"):
df_ei_insights = process_chunks(df_ei_insight_chunks, topic,"ext")
df_ii_insights = process_chunks(df_ii_insight_chunks, topic,"intl")
df_ei_insights["source"]="external intel"
df_ii_insights["source"]="internal intel"
df_insights = pd.concat([df_ei_insights, df_ii_insights])
st.subheader("External & Internal Inteligence Insights")
st.sidebar.success("External & Internal Inteligence Insights Created")
st.write(df_insights)
filtered_insights_on_impact = df_insights[df_insights['classification'] == 'impact']
if filtered_insights_on_impact.empty:
st.write("No impact insights")
st.sidebar.error("No impact insights")
return
# Comparing to Insights
with st.spinner("Comparing Impact Classified Insights To draft submission file"):
df_compare = process_compare(filtered_insights_on_impact, df_sop_chunks, topic)
st.subheader("Comparison of Insights to draft submission file's")
st.sidebar.success("Comparison of External & Internal Intel to draft submission file's Complete")
st.write(df_compare)
filtered_comparisons_df = df_compare[df_compare['ReviewNeeded'] == True]
if filtered_comparisons_df.empty:
st.write("No reviews needed for this draft submission file")
st.sidebar.error("No reviews needed for this draft submission file")
return
# Risk scoring
with st.spinner("Risk Assessing Insights To draft submission file"):
df_risks = risk_score_process(filtered_comparisons_df, topic)
st.subheader("Risk Score of Insights to draft submission file's")
st.sidebar.success("Risk Score of Insights to draft submission file's Completed")
st.write(df_risks)
if __name__ == "__main__":
main()
|