|
|
|
|
|
from pinecone import Pinecone
|
|
from langchain_openai import AzureOpenAIEmbeddings
|
|
import uuid
|
|
import pandas as pd
|
|
import streamlit as st
|
|
import os
|
|
|
|
|
|
pc = Pinecone(api_key="567aca04-6fb0-40a0-ba92-a5ed30be190b")
|
|
index = pc.Index("openai-serverless")
|
|
|
|
|
|
|
|
os.environ["AZURE_OPENAI_API_KEY"] = "86b631a9c0294e9698e327c59ff5ac2c"
|
|
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://davidfearn-gpt4.openai.azure.com/"
|
|
os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"] = "text-embedding-ada-002"
|
|
os.environ["AZURE_OPENAI_API_VERSION"] = "2024-08-01-preview"
|
|
|
|
|
|
embeddings_model = AzureOpenAIEmbeddings(
|
|
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
|
|
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
|
|
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
|
|
)
|
|
|
|
def retriever(query):
|
|
|
|
namespace="gskRegIntel"
|
|
top_k=3
|
|
"""
|
|
Embeds a query string and searches the vector database for similar entries.
|
|
|
|
:param query: The string to embed and search for.
|
|
:param namespace: Pinecone namespace to search within.
|
|
:param top_k: Number of top results to retrieve.
|
|
:return: List of search results with metadata and scores.
|
|
"""
|
|
try:
|
|
|
|
query_embedding = embeddings_model.embed_query(query)
|
|
|
|
|
|
results = index.query(vector=query_embedding, top_k=top_k, namespace=namespace, include_metadata=True)
|
|
|
|
return results.matches
|
|
|
|
except Exception as e:
|
|
print(f"Error during search: {e}")
|
|
return [] |