davidfearne commited on
Commit
0a93ad3
·
verified ·
1 Parent(s): e123c9b

Update retriver.py

Browse files
Files changed (1) hide show
  1. retriver.py +50 -50
retriver.py CHANGED
@@ -1,51 +1,51 @@
1
- # Retriever function
2
-
3
- from pinecone import Pinecone
4
- from langchain_openai import AzureOpenAIEmbeddings
5
- import uuid
6
- import pandas as pd
7
- import streamlit as st
8
- import os
9
- # Initialize Pinecone client
10
- # pc = Pinecone(api_key=st.secrets["PC_API_KEY"])
11
- pc = Pinecone(api_key="567aca04-6fb0-40a0-ba92-a5ed30be190b")
12
- index = pc.Index("openai-serverless")
13
-
14
- # Azure OpenAI configuration
15
- # os.environ["AZURE_OPENAI_API_KEY"] = st.secrets["api_key"]
16
- os.environ["AZURE_OPENAI_API_KEY"] = "86b631a9c0294e9698e327c59ff5ac2c"
17
- os.environ["AZURE_OPENAI_ENDPOINT"] = "https://davidfearn-gpt4.openai.azure.com/"
18
- os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"] = "text-embedding-ada-002"
19
- os.environ["AZURE_OPENAI_API_VERSION"] = "2024-08-01-preview"
20
-
21
- # Model configuration
22
- embeddings_model = AzureOpenAIEmbeddings(
23
- azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
24
- azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
25
- openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
26
- )
27
-
28
- def retriever(query):
29
-
30
- namespace="gskRegIntel"
31
- top_k=3
32
- """
33
- Embeds a query string and searches the vector database for similar entries.
34
-
35
- :param query: The string to embed and search for.
36
- :param namespace: Pinecone namespace to search within.
37
- :param top_k: Number of top results to retrieve.
38
- :return: List of search results with metadata and scores.
39
- """
40
- try:
41
- # Generate embedding for the query
42
- query_embedding = embeddings_model.embed_query(query)
43
-
44
- # Perform search in Pinecone
45
- results = index.query(vector=query_embedding, top_k=top_k, namespace=namespace, include_metadata=True)
46
-
47
- return results.matches
48
-
49
- except Exception as e:
50
- print(f"Error during search: {e}")
51
  return []
 
1
+ # Retriever function
2
+
3
+ from pinecone import Pinecone
4
+ from langchain_openai import AzureOpenAIEmbeddings
5
+ import uuid
6
+ import pandas as pd
7
+ import streamlit as st
8
+ import os
9
+ # Initialize Pinecone client
10
+ pc = Pinecone(api_key=st.secrets["PC_API_KEY"])
11
+
12
+ index = pc.Index("openai-serverless")
13
+
14
+ # Azure OpenAI configuration
15
+ # os.environ["AZURE_OPENAI_API_KEY"] = st.secrets["api_key"]
16
+ os.environ["AZURE_OPENAI_API_KEY"] = "86b631a9c0294e9698e327c59ff5ac2c"
17
+ os.environ["AZURE_OPENAI_ENDPOINT"] = "https://davidfearn-gpt4.openai.azure.com/"
18
+ os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"] = "text-embedding-ada-002"
19
+ os.environ["AZURE_OPENAI_API_VERSION"] = "2024-08-01-preview"
20
+
21
+ # Model configuration
22
+ embeddings_model = AzureOpenAIEmbeddings(
23
+ azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
24
+ azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
25
+ openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
26
+ )
27
+
28
+ def retriever(query):
29
+
30
+ namespace="gskRegIntel"
31
+ top_k=3
32
+ """
33
+ Embeds a query string and searches the vector database for similar entries.
34
+
35
+ :param query: The string to embed and search for.
36
+ :param namespace: Pinecone namespace to search within.
37
+ :param top_k: Number of top results to retrieve.
38
+ :return: List of search results with metadata and scores.
39
+ """
40
+ try:
41
+ # Generate embedding for the query
42
+ query_embedding = embeddings_model.embed_query(query)
43
+
44
+ # Perform search in Pinecone
45
+ results = index.query(vector=query_embedding, top_k=top_k, namespace=namespace, include_metadata=True)
46
+
47
+ return results.matches
48
+
49
+ except Exception as e:
50
+ print(f"Error during search: {e}")
51
  return []