davidfearne commited on
Commit
37f93a9
·
verified ·
1 Parent(s): 48902ca

Create retriever.py

Browse files
Files changed (1) hide show
  1. retriever.py +45 -0
retriever.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Retriever function
2
+
3
+ from pinecone import Pinecone
4
+ from langchain_openai import AzureOpenAIEmbeddings
5
+ import uuid
6
+ import pandas as pd
7
+
8
+ # Initialize Pinecone client
9
+ pc = Pinecone(api_key="567aca04-6fb0-40a0-ba92-a5ed30be190b")
10
+ index = pc.Index("openai-serverless")
11
+
12
+ # Azure OpenAI configuration
13
+ os.environ["AZURE_OPENAI_API_KEY"] =
14
+ os.environ["AZURE_OPENAI_ENDPOINT"] = "https://davidfearn-gpt4.openai.azure.com/"
15
+ os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"] = "text-embedding-ada-002"
16
+ os.environ["AZURE_OPENAI_API_VERSION"] = "2024-08-01-preview"
17
+
18
+ # Model configuration
19
+ embeddings_model = AzureOpenAIEmbeddings(
20
+ azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
21
+ azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
22
+ openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
23
+ )
24
+
25
+ def retriever(query, namespace="gskRegIntel", top_k=3):
26
+ """
27
+ Embeds a query string and searches the vector database for similar entries.
28
+
29
+ :param query: The string to embed and search for.
30
+ :param namespace: Pinecone namespace to search within.
31
+ :param top_k: Number of top results to retrieve.
32
+ :return: List of search results with metadata and scores.
33
+ """
34
+ try:
35
+ # Generate embedding for the query
36
+ query_embedding = embeddings_model.embed_query(query)
37
+
38
+ # Perform search in Pinecone
39
+ results = index.query(vector=query_embedding, top_k=top_k, namespace=namespace, include_metadata=True)
40
+
41
+ return results.matches
42
+
43
+ except Exception as e:
44
+ print(f"Error during search: {e}")
45
+ return []