Spaces:
Running
on
T4
Running
on
T4
File size: 18,478 Bytes
ec60ae9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
from __future__ import annotations
import os
import io
import re
import time
import uuid
import torch
import cohere
import secrets
import requests
import fasttext
import replicate
import numpy as np
import gradio as gr
from PIL import Image
from groq import Groq
from TTS.api import TTS
from elevenlabs import save
from gradio.themes.base import Base
from elevenlabs.client import ElevenLabs
from huggingface_hub import hf_hub_download
from gradio.themes.utils import colors, fonts, sizes
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from prompt_examples import TEXT_CHAT_EXAMPLES, IMG_GEN_PROMPT_EXAMPLES, AUDIO_EXAMPLES, TEXT_CHAT_EXAMPLES_LABELS, IMG_GEN_PROMPT_EXAMPLES_LABELS, AUDIO_EXAMPLES_LABELS
from preambles import CHAT_PREAMBLE, AUDIO_RESPONSE_PREAMBLE, IMG_DESCRIPTION_PREAMBLE
from constants import LID_LANGUAGES, NEETS_AI_LANGID_MAP, AYA_MODEL_NAME, BATCH_SIZE, USE_ELVENLABS, USE_REPLICATE
HF_API_TOKEN = os.getenv("HF_API_KEY")
ELEVEN_LABS_KEY = os.getenv("ELEVEN_LABS_KEY")
NEETS_AI_API_KEY = os.getenv("NEETS_AI_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
IMG_COHERE_API_KEY = os.getenv("IMG_COHERE_API_KEY")
AUDIO_COHERE_API_KEY = os.getenv("AUDIO_COHERE_API_KEY")
CHAT_COHERE_API_KEY = os.getenv("CHAT_COHERE_API_KEY")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize cohere clients
img_prompt_client = cohere.Client(
api_key=IMG_COHERE_API_KEY,
client_name="c4ai-aya-expanse-img"
)
chat_client = cohere.Client(
api_key=CHAT_COHERE_API_KEY,
client_name="c4ai-aya-expanse-chat"
)
audio_response_client = cohere.Client(
api_key=AUDIO_COHERE_API_KEY,
client_name="c4ai-aya-expanse-audio"
)
# Initialize the Groq client
groq_client = Groq(api_key=GROQ_API_KEY)
# Initialize the ElevenLabs client
eleven_labs_client = ElevenLabs(
api_key=ELEVEN_LABS_KEY,
)
# Language identification
lid_model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
LID_model = fasttext.load_model(lid_model_path)
def predict_language(text):
text = re.sub("\n", " ", text)
label, logit = LID_model.predict(text)
label = label[0][len("__label__") :]
print("predicted language:", label)
return label
# Image Generation util functions
def get_hf_inference_api_response(payload, model_id):
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
MODEL_API_URL = f"https://api-inference.huggingface.co/models/{model_id}"
response = requests.post(MODEL_API_URL, headers=headers, json=payload)
return response.content
def replicate_api_inference(input_prompt):
input_params={
"prompt": input_prompt,
"go_fast": True,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "jpg",
"output_quality": 80,
"num_inference_steps": 4
}
image = replicate.run("black-forest-labs/flux-schnell",input=input_params)
image = Image.open(image[0])
return image
def generate_image(input_prompt, model_id="black-forest-labs/FLUX.1-schnell"):
if input_prompt!="":
if input_prompt=='Image generation blocked for prompts that include humans, kids, or children.':
return None
else:
if USE_REPLICATE:
print("using replicate for image generation")
image = replicate_api_inference(input_prompt)
else:
try:
print("using HF inference API for image generation")
image_bytes = get_hf_inference_api_response({ "inputs": input_prompt}, model_id)
image = np.array(Image.open(io.BytesIO(image_bytes)))
except Exception as e:
print("HF API error:", e)
# generate image with help replicate in case of error
image = replicate_api_inference(input_prompt)
return image
else:
return None
def generate_img_prompt(input_prompt):
# clean prompt before doing language detection
cleaned_prompt = clean_text(input_prompt, remove_bullets=True, remove_newline=True)
text_lang_code = predict_language(cleaned_prompt)
language = LID_LANGUAGES[text_lang_code]
gr.Info("Generating Image", duration=2)
if language!="english":
text = f"""
Translate the given input prompt to English.
Input Prompt: {input_prompt}
Once translated, use the English version of the prompt to create a detailed image description suitable for a text-to-image model.
Ensure the description is concise, limited to 2-3 lines, and integrates key elements from the translated prompt.
Add the prompt English translation to the image description, and respond with that.
"""
else:
text = f"""Generate a detailed image description which can be used to generate an image using a text-to-image model based on the given input prompt:
Input Prompt: {input_prompt}
Do not use more than 3-4 lines for the description.
"""
response = img_prompt_client.chat(message=text, preamble=IMG_DESCRIPTION_PREAMBLE, model=AYA_MODEL_NAME)
output = response.text
return output
# Chat with Aya util functions
def trigger_example(example):
chat, updated_history = generate_aya_chat_response(example)
return chat, updated_history
def generate_aya_chat_response(user_message, cid, token, history=None):
if not token:
raise gr.Error("Error loading.")
if history is None:
history = []
if cid == "" or None:
cid = str(uuid.uuid4())
print(f"cid: {cid} prompt:{user_message}")
history.append(user_message)
stream = chat_client.chat_stream(message=user_message, preamble=CHAT_PREAMBLE, conversation_id=cid, model=AYA_MODEL_NAME, connectors=[], temperature=0.3)
output = ""
for idx, response in enumerate(stream):
if response.event_type == "text-generation":
output += response.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [
(history[i].strip(), history[i + 1].strip())
for i in range(0, len(history) - 1, 2)
]
yield chat, history, cid
return chat, history, cid
def clear_chat():
return [], [], str(uuid.uuid4())
# Audio Pipeline util functions
def transcribe_and_stream(inputs, show_info="no", model_name="openai/whisper-large-v3-turbo", language="english"):
if inputs is not None and inputs!="":
if show_info=="show_info":
gr.Info("Processing Audio", duration=1)
if model_name != "groq_whisper":
print("DEVICE:", DEVICE)
pipe = pipeline(
task="automatic-speech-recognition",
model=model_name,
chunk_length_s=30,
DEVICE=DEVICE)
text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"]
else:
text = groq_whisper_tts(inputs)
# stream text output
for i in range(len(text)):
time.sleep(0.01)
yield text[: i + 10]
else:
return ""
def aya_speech_text_response(text):
if text is not None and text!="":
stream = audio_response_client.chat_stream(message=text,preamble=AUDIO_RESPONSE_PREAMBLE, model=AYA_MODEL_NAME)
output = ""
for event in stream:
if event:
if event.event_type == "text-generation":
output+=event.text
cleaned_output = clean_text(output)
yield cleaned_output
else:
return ""
def clean_text(text, remove_bullets=False, remove_newline=False):
# Remove bold formatting
cleaned_text = re.sub(r"\*\*", "", text)
if remove_bullets:
cleaned_text = re.sub(r"^- ", "", cleaned_text, flags=re.MULTILINE)
if remove_newline:
cleaned_text = re.sub(r"\n", " ", cleaned_text)
return cleaned_text
def convert_text_to_speech(text, language="english"):
# do language detection to determine voice of speech response
if text is not None and text!="":
# clean text before doing language detection
cleaned_text = clean_text(text, remove_bullets=True, remove_newline=True)
text_lang_code = predict_language(cleaned_text)
language = LID_LANGUAGES[text_lang_code]
if not USE_ELVENLABS:
if language!= "japanese":
audio_path = neetsai_tts(text, language)
else:
print("DEVICE:", DEVICE)
# if language is japanese then use XTTS for TTS since neets_ai doesn't support japanese voice
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(DEVICE)
speaker_wav="samples/ja-sample.wav"
lang_code="ja"
audio_path = "./output.wav"
tts.tts_to_file(text=text, speaker_wav=speaker_wav, language=lang_code, file_path=audio_path)
else:
# use elevenlabs for TTS
audio_path = elevenlabs_generate_audio(text)
return audio_path
else:
return None
def elevenlabs_generate_audio(text):
audio = eleven_labs_client.generate(
text=text,
voice="River",
model="eleven_turbo_v2_5", #"eleven_multilingual_v2"
)
# save audio
audio_path = "./audio.mp3"
save(audio, audio_path)
return audio_path
def neetsai_tts(input_text, language):
lang_id = NEETS_AI_LANGID_MAP[language]
neets_vits_voice_id = f"vits-{lang_id}"
response = requests.request(
method="POST",
url="https://api.neets.ai/v1/tts",
headers={
"Content-Type": "application/json",
"X-API-Key": NEETS_AI_API_KEY
},
json={
"text": input_text,
"voice_id": neets_vits_voice_id,
"params": {
"model": "vits"
}
}
)
# save audio file
audio_path = "neets_demo.mp3"
with open(audio_path, "wb") as f:
f.write(response.content)
return audio_path
def groq_whisper_tts(filename):
with open(filename, "rb") as file:
transcriptions = groq_client.audio.transcriptions.create(
file=(filename, file.read()),
model="whisper-large-v3-turbo",
response_format="json",
temperature=0.0
)
print("transcribed text:", transcriptions.text)
print("********************************")
return transcriptions.text
# setup gradio app theme
theme = gr.themes.Base(
primary_hue=gr.themes.colors.teal,
secondary_hue=gr.themes.colors.blue,
neutral_hue=gr.themes.colors.gray,
text_size=gr.themes.sizes.text_lg,
).set(
# Primary Button Color
button_primary_background_fill="#114A56",
button_primary_background_fill_hover="#114A56",
# Block Labels
block_title_text_weight="600",
block_label_text_weight="600",
block_label_text_size="*text_md",
)
demo = gr.Blocks(theme=theme, analytics_enabled=False)
with demo:
with gr.Row(variant="panel"):
with gr.Column(scale=1):
gr.Image("aya-expanse.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False)
with gr.Column(scale=30):
gr.Markdown("""C4AI Aya Expanse is a state-of-art model with highly advanced capabilities to connect the world across languages.
<br/>
You can use this space to chat, speak and visualize with Aya Expanse in 23 languages.
**Developed by**: [Cohere for AI](https://cohere.com/research) and [Cohere](https://cohere.com/)
"""
)
# Text Chat
with gr.TabItem("Chat with Aya") as chat_with_aya:
cid = gr.State("")
token = gr.State(value=None)
with gr.Column():
with gr.Row():
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, height=300)
with gr.Row():
user_message = gr.Textbox(lines=1, placeholder="Ask anything in our 23 languages ...", label="Input", show_label=False)
with gr.Row():
submit_button = gr.Button("Submit",variant="primary")
clear_button = gr.Button("Clear")
history = gr.State([])
user_message.submit(fn=generate_aya_chat_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
submit_button.click(fn=generate_aya_chat_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, cid], concurrency_limit=32)
user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False)
submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
with gr.Row():
gr.Examples(
examples=TEXT_CHAT_EXAMPLES,
inputs=user_message,
cache_examples=False,
fn=trigger_example,
outputs=[chatbot],
examples_per_page=25,
label="Load example prompt for:",
example_labels=TEXT_CHAT_EXAMPLES_LABELS,
)
# Audio Pipeline
with gr.TabItem("Speak with Aya") as speak_with_aya:
with gr.Row():
with gr.Column():
e2e_audio_file = gr.Audio(sources="microphone", type="filepath", min_length=None)
clear_button_microphone = gr.ClearButton()
gr.Examples(
examples=AUDIO_EXAMPLES,
inputs=e2e_audio_file,
cache_examples=False,
examples_per_page=25,
label="Load example audio for:",
example_labels=AUDIO_EXAMPLES_LABELS,
)
with gr.Column():
e2e_audio_file_trans = gr.Textbox(lines=3,label="Your Input", autoscroll=False, show_copy_button=True, interactive=False)
e2e_audio_file_aya_response = gr.Textbox(lines=3,label="Aya's Response", show_copy_button=True, container=True, interactive=False)
e2e_aya_audio_response = gr.Audio(type="filepath", label="Aya's Audio Response")
show_info = gr.Textbox(value="show_info", visible=False)
stt_model = gr.Textbox(value="groq_whisper", visible=False)
with gr.Accordion("See Details", open=False):
gr.Markdown("To enable voice interaction with Aya Expanse, this space uses [Whisper large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) and [Groq](https://groq.com/) for STT and [neets.ai](http://neets.ai/) for TTS.")
# Image Generation
with gr.TabItem("Visualize with Aya") as visualize_with_aya:
with gr.Row():
with gr.Column():
input_img_prompt = gr.Textbox(placeholder="Ask anything in our 23 languages ...", label="Describe an image", lines=3)
# generated_img_desc = gr.Textbox(label="Image Description generated by Aya", interactive=False, lines=3, visible=False)
submit_button_img = gr.Button(value="Submit", variant="primary")
clear_button_img = gr.ClearButton()
with gr.Column():
generated_img = gr.Image(label="Generated Image", interactive=False)
with gr.Row():
gr.Examples(
examples=IMG_GEN_PROMPT_EXAMPLES,
inputs=input_img_prompt,
cache_examples=False,
examples_per_page=25,
label="Load example prompt for:",
example_labels=IMG_GEN_PROMPT_EXAMPLES_LABELS
)
generated_img_desc = gr.Textbox(label="Image Description generated by Aya", interactive=False, lines=3, visible=False)
# increase spacing between examples and Accordion components
with gr.Row():
pass
with gr.Row():
pass
with gr.Row():
pass
with gr.Row():
with gr.Accordion("See Details", open=False):
gr.Markdown("This space uses Aya Expanse for translating multilingual prompts and generating detailed image descriptions and [Flux Schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) for Image Generation.")
# Image Generation
clear_button_img.click(lambda: None, None, input_img_prompt)
clear_button_img.click(lambda: None, None, generated_img_desc)
clear_button_img.click(lambda: None, None, generated_img)
submit_button_img.click(
generate_img_prompt,
inputs=[input_img_prompt],
outputs=[generated_img_desc],
)
generated_img_desc.change(
generate_image, #run_flux,
inputs=[generated_img_desc],
outputs=[generated_img],
show_progress="hidden",
)
# Audio Pipeline
clear_button_microphone.click(lambda: None, None, e2e_audio_file)
clear_button_microphone.click(lambda: None, None, e2e_audio_file_trans)
clear_button_microphone.click(lambda: None, None, e2e_aya_audio_response)
e2e_audio_file.change(
transcribe_and_stream,
inputs=[e2e_audio_file, show_info, stt_model],
outputs=[e2e_audio_file_trans],
show_progress="hidden",
).then(
aya_speech_text_response,
inputs=[e2e_audio_file_trans],
outputs=[e2e_audio_file_aya_response],
show_progress="minimal",
).then(
convert_text_to_speech,
inputs=[e2e_audio_file_aya_response],
outputs=[e2e_aya_audio_response],
show_progress="minimal",
)
demo.load(lambda: secrets.token_hex(16), None, token)
demo.queue(api_open=False, max_size=40).launch(show_api=False, allowed_paths=['/home/user/app']) |