File size: 5,522 Bytes
beb9ce6
 
 
 
 
7c67e12
 
beb9ce6
 
 
c3b735b
beb9ce6
 
a7bec97
 
beb9ce6
 
7c67e12
 
 
 
 
beb9ce6
 
d80d48d
0f87b5f
f75f3a4
 
 
beb9ce6
7eabdd5
beb9ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c6795
beb9ce6
12c6795
beb9ce6
 
1b7769d
 
beb9ce6
 
 
2b9ffad
 
 
 
 
 
 
 
28634ff
 
 
c66beaa
 
c3b735b
 
beb9ce6
 
 
 
 
 
 
 
 
 
 
 
 
0f87b5f
7c67e12
 
beb9ce6
 
 
 
1b7769d
beb9ce6
5fcfd77
beb9ce6
 
 
96ca0ee
beb9ce6
 
 
 
 
fbdb327
beb9ce6
 
 
 
 
 
 
 
 
 
 
 
7c67e12
 
 
1b7769d
beb9ce6
12c6795
 
 
 
beb9ce6
 
 
a7bec97
beb9ce6
 
 
d80d48d
beb9ce6
 
7c67e12
 
beb9ce6
 
7eabdd5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import cohere
import os
import re
import uuid
import secrets



cohere_api_key = os.getenv("COHERE_API_KEY")
co = cohere.Client(cohere_api_key, client_name="huggingface-rp")


def trigger_example(example):
    chat, updated_history = generate_response(example)
    return chat, updated_history
        
def generate_response(user_message, cid, token, history=None):

    if not token:
        raise gr.Error("Error loading.")
        
    if history is None:
        history = []
    if cid == "" or None:    
        cid = str(uuid.uuid4())

    print(f"cid: {cid} prompt:{user_message}")
    
    history.append(user_message)
    
    stream = co.chat_stream(message=user_message, conversation_id=cid, model='command-r-plus', connectors=[], temperature=0.3)
    
    output = ""
    
    for idx, response in enumerate(stream):
        if response.event_type == "text-generation":
            output += response.text
        if idx == 0:
            history.append(" " + output)
        else:
            history[-1] = output
        chat = [
            (history[i].strip(), history[i + 1].strip())
            for i in range(0, len(history) - 1, 2)
        ] 
        yield chat, history, cid
        
    return chat, history, cid
    

def clear_chat():
    return [], [], str(uuid.uuid4())


examples = [
    "What are 8 good questions to get to know a stranger?",
    "Create a list of 10 unusual excuses people might use to get out of a work meeting",
    "Write a python code to reverse a string",
    "Explain the relativity theory in French",
    "Como sair de um helicóptero que caiu na água?",
    "Formally introduce the transformer architecture with notation.",
    "¿Cómo le explicarías el aprendizaje automático a un extraterrestre?",
    "Summarize recent news about the North American tech job market",
    "Explain gravity to a chicken.",
    "Is the world discrete or analog?",
    "What is the memory cost in a typical implementation of an all-gather operation?",
    "Give me a brief history of the golden era of Cantopop.",
    "Descrivi il processo di creazione di un capolavoro, come se fossi un artista del Rinascimento a Firenze.",
    "Explique-moi le sens de la vie selon un grand auteur littéraire.",
    "Give me an example of an endangered species and let me know what I can do to help preserve it"
]

custom_css = """
#logo-img {
    border: none !important;
}
#chat-message {
    font-size: 14px;
    min-height: 300px;
}
"""

with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
    cid = gr.State("")
    token = gr.State(value=None)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Image("logoplus.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False)
        with gr.Column(scale=3):
            gr.Markdown("""C4AI Command R+ is a research open weights release of a 104B billion parameter with highly advanced Retrieval Augmented Generation (RAG) capabilities, tool Use to automate sophisticated tasks, and is multilingual in 10 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, and Chinese. Command R+ is optimized for a variety of use cases including reasoning, summarization, and question answering.
            <br/><br/>
            **Model**: [c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
            <br/> 
            **Developed by**: [Cohere](https://cohere.com/) and [Cohere for AI](https://cohere.com/research)
            <br/>
            **License**: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
            """
            )
            
    with gr.Column():
        with gr.Row():
            chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True)
        
        with gr.Row():
            user_message = gr.Textbox(lines=1, placeholder="Ask anything ...", label="Input", show_label=False)

      
        with gr.Row():
            submit_button = gr.Button("Submit")
            clear_button = gr.Button("Clear chat")

                        
        history = gr.State([])
        
        user_message.submit(fn=generate_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
        submit_button.click(fn=generate_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
        
        clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, cid], concurrency_limit=32)

        user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False)
        submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
        clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
        
        with gr.Row():
            gr.Examples(
                examples=examples,
                inputs=user_message,
                cache_examples=False,
                fn=trigger_example,
                outputs=[chatbot],
                examples_per_page=100
            )

    demo.load(lambda: secrets.token_hex(16), None, token)

if __name__ == "__main__":
    # demo.launch(debug=True)
    try:
        demo.queue(api_open=False, max_size=40).launch(show_api=False)
    except Exception as e:
        print(f"Error: {e}")