import gradio as gr import cohere import os import re import uuid cohere_api_key = os.getenv("COHERE_API_KEY") co = cohere.Client(cohere_api_key) def trigger_example(example): chat, updated_history = generate_response(example) return chat, updated_history def generate_response(user_message, cid, history=None): if history is None: history = [] if cid == "" or None: cid = str(uuid.uuid4()) history.append(user_message) stream = co.chat_stream(message=user_message, conversation_id=cid, model='command-r-plus', connectors=[], temperature=0.3) output = "" for idx, response in enumerate(stream): if response.event_type == "text-generation": output += response.text if idx == 0: history.append(" " + output) else: history[-1] = output chat = [ (history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2) ] yield chat, history, cid return chat, history, cid def clear_chat(): return [], [], str(uuid.uuid4()) examples = [ "What are 8 good questions to get to know a stranger?", "Create a list of 10 unusual excuses people might use to get out of a work meeting", "Write a python code to reverse a string", "Explain the relativity theory in French", "Como sair de um helicóptero que caiu na água?", "Formally introduce the transformer architecture with notation.", "¿Cómo le explicarías el aprendizaje automático a un extraterrestre?", "Summarize recent news about the North American tech job market", "Explain gravity to a chicken.", "Is the world discrete or analog?", "What is the memory cost in a typical implementation of an all-gather operation?", "Give me a brief history of the golden era of Cantopop.", "Descrivi il processo di creazione di un capolavoro, come se fossi un artista del Rinascimento a Firenze.", "Explique-moi le sens de la vie selon un grand auteur littéraire." ] custom_css = """ #logo-img { border: none !important; } #chat-message { font-size: 14px; min-height: 300px; } """ with gr.Blocks(analytics_enabled=False, css=custom_css) as demo: cid = gr.State("") with gr.Row(): with gr.Column(scale=1): gr.Image("logoplus.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False) with gr.Column(scale=3): gr.Markdown("""C4AI Command R+ is a research open weights release of a 104B billion parameter with highly advanced Retrieval Augmented Generation (RAG) capabilities, tool Use to automate sophisticated tasks, and is multilingual in 10 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Arabic, and Chinese. Command R+ is optimized for a variety of use cases including reasoning, summarization, and question answering.

**Model**: [c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
**Developed by**: [Cohere](https://cohere.com/) and [Cohere for AI](https://cohere.com/research)
**License**: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) """ ) with gr.Column(): with gr.Row(): chatbot = gr.Chatbot(show_label=False) with gr.Row(): user_message = gr.Textbox(lines=1, placeholder="Ask anything ...", label="Input", show_label=False) with gr.Row(): submit_button = gr.Button("Submit") clear_button = gr.Button("Clear chat") history = gr.State([]) user_message.submit(fn=generate_response, inputs=[user_message, cid, history], outputs=[chatbot, history, cid], concurrency_limit=32) submit_button.click(fn=generate_response, inputs=[user_message, cid, history], outputs=[chatbot, history, cid], concurrency_limit=32) clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, cid], concurrency_limit=32) user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False) submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False) clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False) with gr.Row(): gr.Examples( examples=examples, inputs=[user_message], cache_examples=False, fn=trigger_example, outputs=[chatbot], examples_per_page=100 ) if __name__ == "__main__": # demo.launch(debug=True) demo.queue(api_open=False, max_size=40).launch()