File size: 11,010 Bytes
391cdfe
f1218fc
 
 
391cdfe
f1218fc
391cdfe
f1218fc
 
 
 
 
 
 
 
 
 
391cdfe
 
 
 
 
f1218fc
c43287d
f1218fc
 
64105c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c43287d
f1218fc
 
 
 
 
 
 
391cdfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c43287d
f1218fc
391cdfe
 
 
 
 
f1218fc
 
c43287d
f1218fc
 
391cdfe
f1218fc
 
391cdfe
f1218fc
 
 
 
 
 
 
 
 
 
 
391cdfe
 
e4d11b8
a5ac953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4d11b8
 
 
 
 
 
 
 
a5ac953
 
 
 
 
 
f1218fc
c706328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d5db7
c706328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c43287d
 
 
 
 
 
64105c5
 
 
62d5db7
55b0c51
c43287d
e4d11b8
55b0c51
 
 
 
 
 
 
 
 
 
 
 
c43287d
55b0c51
 
 
 
 
62d5db7
55b0c51
 
 
 
 
 
 
 
c43287d
55b0c51
f1218fc
c43287d
 
 
 
 
 
 
 
 
 
 
 
 
62d5db7
c43287d
 
62d5db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1218fc
62d5db7
 
 
 
f1218fc
 
 
 
64105c5
 
 
c43287d
64105c5
c43287d
 
 
 
 
 
 
 
 
 
 
55b0c51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import copy
import json
import re
import requests
import uuid

# from curl_cffi import requests
from tclogger import logger
from transformers import AutoTokenizer

from constants.models import (
    MODEL_MAP,
    STOP_SEQUENCES_MAP,
    TOKEN_LIMIT_MAP,
    TOKEN_RESERVED,
)
from constants.envs import PROXIES
from constants.headers import (
    REQUESTS_HEADERS,
    HUGGINGCHAT_POST_HEADERS,
    HUGGINGCHAT_SETTINGS_POST_DATA,
)
from messagers.message_outputer import OpenaiStreamOutputer
from messagers.message_composer import MessageComposer


class TokenChecker:
    def __init__(self, input_str: str, model: str):
        self.input_str = input_str

        if model in MODEL_MAP.keys():
            self.model = model
        else:
            self.model = "mixtral-8x7b"

        self.model_fullname = MODEL_MAP[self.model]

        if self.model == "llama3-70b":
            # As original llama3 repo is gated and requires auth,
            #   I use NousResearch's version as a workaround
            self.tokenizer = AutoTokenizer.from_pretrained(
                "NousResearch/Meta-Llama-3-70B"
            )
        else:
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_fullname)

    def count_tokens(self):
        token_count = len(self.tokenizer.encode(self.input_str))
        logger.note(f"Prompt Token Count: {token_count}")
        return token_count

    def check_token_limit(self):
        token_limit = TOKEN_LIMIT_MAP[self.model]
        token_redundancy = int(token_limit - TOKEN_RESERVED - self.count_tokens())
        if token_redundancy <= 0:
            raise ValueError(f"Prompt exceeded token limit: {token_limit}")
        return True


class HuggingchatRequester:
    def __init__(self, model: str):
        if model in MODEL_MAP.keys():
            self.model = model
        else:
            self.model = "mixtral-8x7b"
        self.model_fullname = MODEL_MAP[self.model]

    def get_hf_chat_id(self):
        request_url = "https://huggingface.co/chat/settings"
        request_body = copy.deepcopy(HUGGINGCHAT_SETTINGS_POST_DATA)
        extra_body = {
            "activeModel": self.model_fullname,
        }
        request_body.update(extra_body)
        logger.note(f"> hf-chat ID:", end=" ")

        res = requests.post(
            request_url,
            headers=HUGGINGCHAT_POST_HEADERS,
            json=request_body,
            proxies=PROXIES,
            timeout=10,
        )
        self.hf_chat_id = res.cookies.get("hf-chat")
        if self.hf_chat_id:
            logger.success(f"[{self.hf_chat_id}]")
        else:
            logger.warn(f"[{res.status_code}]")
            logger.warn(res.text)
            raise ValueError("Failed to get hf-chat ID!")

    def get_conversation_id(self, system_prompt: str = ""):
        request_url = "https://huggingface.co/chat/conversation"
        request_headers = HUGGINGCHAT_POST_HEADERS
        extra_headers = {
            "Cookie": f"hf-chat={self.hf_chat_id}",
        }
        request_headers.update(extra_headers)
        request_body = {
            "model": self.model_fullname,
            "preprompt": system_prompt,
        }
        logger.note(f"> Conversation ID:", end=" ")

        res = requests.post(
            request_url,
            headers=request_headers,
            json=request_body,
            proxies=PROXIES,
            timeout=10,
        )
        if res.status_code == 200:
            conversation_id = res.json()["conversationId"]
            logger.success(f"[{conversation_id}]")
        else:
            logger.warn(f"[{res.status_code}]")
            raise ValueError("Failed to get conversation ID!")
        self.conversation_id = conversation_id
        return conversation_id

    def get_last_message_id(self):
        request_url = f"https://huggingface.co/chat/conversation/{self.conversation_id}/__data.json?x-sveltekit-invalidated=11"
        request_headers = HUGGINGCHAT_POST_HEADERS
        extra_headers = {
            "Cookie": f"hf-chat={self.hf_chat_id}",
        }
        request_headers.update(extra_headers)
        logger.note(f"> Message ID:", end=" ")

        message_id = None
        res = requests.post(
            request_url,
            headers=request_headers,
            proxies=PROXIES,
            timeout=10,
        )
        if res.status_code == 200:
            data = res.json()["nodes"][1]["data"]
            # find the last element which matches the format of uuid4
            uuid_pattern = re.compile(
                r"^[\da-f]{8}-[\da-f]{4}-[\da-f]{4}-[\da-f]{4}-[\da-f]{12}$"
            )
            for item in data:
                if type(item) == str and uuid_pattern.match(item):
                    message_id = item
            logger.success(f"[{message_id}]")
        else:
            logger.warn(f"[{res.status_code}]")
            raise ValueError("Failed to get conversation ID!")

        return message_id

    def log_request(self, url, method="GET"):
        logger.note(f"> {method}:", end=" ")
        logger.mesg(f"{url}", end=" ")

    def log_response(
        self, res: requests.Response, stream=False, iter_lines=False, verbose=False
    ):
        status_code = res.status_code
        status_code_str = f"[{status_code}]"

        if status_code == 200:
            logger_func = logger.success
        else:
            logger_func = logger.warn

        logger.enter_quiet(not verbose)
        logger_func(status_code_str)

        if status_code != 200:
            logger_func(res.text)

        if stream:
            if not iter_lines:
                return

            for line in res.iter_lines():
                line = line.decode("utf-8")
                line = re.sub(r"^data:\s*", "", line)
                line = line.strip()
                if line:
                    try:
                        data = json.loads(line, strict=False)
                        msg_type = data.get("type")
                        if msg_type == "status":
                            msg_status = data.get("status")
                        elif msg_type == "stream":
                            content = data.get("token", "")
                            logger_func(content, end="")
                        elif msg_type == "finalAnswer":
                            full_content = data.get("text")
                            logger.success("\n[Finished]")
                            break
                        else:
                            pass
                    except Exception as e:
                        logger.warn(e)
        else:
            logger_func(res.json())

        logger.exit_quiet(not verbose)

    def chat_completions(self, messages: list[dict], iter_lines=False, verbose=False):
        composer = MessageComposer(model=self.model)
        system_prompt, input_prompt = composer.decompose_to_system_and_input_prompt(
            messages
        )

        checker = TokenChecker(input_str=system_prompt + input_prompt, model=self.model)
        checker.check_token_limit()

        logger.enter_quiet(not verbose)
        self.get_hf_chat_id()
        self.get_conversation_id(system_prompt=system_prompt)
        message_id = self.get_last_message_id()

        request_url = f"https://huggingface.co/chat/conversation/{self.conversation_id}"
        request_headers = copy.deepcopy(HUGGINGCHAT_POST_HEADERS)
        extra_headers = {
            "Content-Type": "text/event-stream",
            "Referer": request_url,
            "Cookie": f"hf-chat={self.hf_chat_id}",
        }
        request_headers.update(extra_headers)
        request_body = {
            "files": [],
            "id": message_id,
            "inputs": input_prompt,
            "is_continue": False,
            "is_retry": False,
            "web_search": False,
        }
        self.log_request(request_url, method="POST")
        logger.exit_quiet(not verbose)

        res = requests.post(
            request_url,
            headers=request_headers,
            json=request_body,
            proxies=PROXIES,
            stream=True,
        )
        self.log_response(res, stream=True, iter_lines=iter_lines, verbose=verbose)
        return res


class HuggingchatStreamer:
    def __init__(self, model: str):
        if model in MODEL_MAP.keys():
            self.model = model
        else:
            self.model = "mixtral-8x7b"
        self.model_fullname = MODEL_MAP[self.model]
        self.message_outputer = OpenaiStreamOutputer(model=self.model)

    def chat_response(self, messages: list[dict], verbose=False):
        requester = HuggingchatRequester(model=self.model)
        return requester.chat_completions(
            messages=messages, iter_lines=False, verbose=verbose
        )

    def chat_return_generator(self, stream_response: requests.Response, verbose=False):
        is_finished = False
        for line in stream_response.iter_lines():
            line = line.decode("utf-8")
            line = re.sub(r"^data:\s*", "", line)
            line = line.strip()
            if not line:
                continue
            try:
                data = json.loads(line, strict=False)
                msg_type = data.get("type")
                if msg_type == "status":
                    msg_status = data.get("status")
                    continue
                elif msg_type == "stream":
                    content_type = "Completions"
                    content = data.get("token", "")
                    if verbose:
                        logger.success(content, end="")
                elif msg_type == "finalAnswer":
                    content_type = "Finished"
                    content = ""
                    full_content = data.get("text")
                    if verbose:
                        logger.success("\n[Finished]")
                    is_finished = True
                    break
                else:
                    continue
            except Exception as e:
                logger.warn(e)

            output = self.message_outputer.output(
                content=content, content_type=content_type
            )
            yield output

        if not is_finished:
            yield self.message_outputer.output(content="", content_type="Finished")

    def chat_return_dict(self, stream_response):
        pass


if __name__ == "__main__":
    # model = "command-r-plus"
    model = "llama3-70b"
    # model = "zephyr-141b"

    streamer = HuggingchatStreamer(model=model)
    messages = [
        {
            "role": "system",
            "content": "You are an LLM developed by CloseAI.\nYour name is Hansimov-Copilot.",
        },
        {"role": "user", "content": "Hello, what is your role?"},
        {"role": "assistant", "content": "I am an LLM."},
        {"role": "user", "content": "What is your name?"},
    ]

    streamer.chat_response(messages=messages)
    # HF_ENDPOINT=https://hf-mirror.com python -m networks.huggingchat_streamer